PG AND RESEARCH DEPARTMENT OF MATHEMATICS

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE,

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai) Re-Accredited with "A" Grade by NAAC, by Banglore

Uthamapalayam - 625 533.

Syllabus for Master of Philosophy - Mathematics (Academic Year 2017-18 Onwards)

PROGRAMME SPECIFIC OUTCOMES:

- **PSO1.** Develop research level thinking in the field of pure and applied mathematics
- **PSO2.** Assimilate complex mathematical ideas and arguments
- **PSO3.** Apply domination theory in installing common facility in appropriate points in town planning. Further labeling theory is used to allot radio frequency for transmission of messages.
- **PSO4.** Develop abstract mathematical thinking and to improve own learning and performance

HAEE KARUTHA ROWTHER HOWDIA COLLEGE (AUTONOMOUS) UTHAMAPALAYAM

M.Phil MATHEMATICS SYLLABUS

Academic Year 2017-2018 Onwards

I Semester

Three Theory Papers Code

Core I- Research Methodology: Associative Algebra 17MMAC11

Core II- Advance Mathematics: Advanced Analysis 17MMAC12

Elective Papers:

A . Graph Theory 17MMAE11

B. Stochastic Process 17MMAE12

For each paper- Internal 40 marks and external 60 marks

Mark splitting pattern (Internal):

Conducting three tests (Average of Best two) - 25 marks

Seminar - 15 marks

No marks for assignment

II Semester:

Dissertation only- 200 marks

Evaluation of dissertation - 150 marks

(Average of internal and external examiners)

Viva- voce - 50 marks

Question pattern

Max. marks: 60 Time 3 hrs.

Part A (5x6 = 30 marks)

Answer **ALL** questions choosing either (a) or (b)

(One question from each unit with internal choice)

Part B (3x10 = 30 marks)

Answer **ANY THREE** questions (out of five questions)

(one question from each unit)

M.Phil Scheme of Examination

Sem	Course Code	Title of the Course	Credit	Internal Marks	External Marks	Total Marks
I	17MMAC11	Research Methodology: Associative Algebra	4	40	60	100
	17MMAC12	Advance Mathematics: Advanced Analysis	4	40	60	100
	17MMAE11 Or	Elective A.Graph Theory	4	40	60	100
	17MMAE12	Elective B. Stochastic Process	4	40	60	100
II	17MMACEV	Dissertation	8	150	50	200
	Total		20	270	230	500

Research Methodology

Programme: M.Phil., Maths Course Category: Core - I

Semester : I Hours: 5

Course Code: 17MMAC11 Credits: 5

Course Outcome:

CO1: Develop research level thinking in the field of pure and applied mathematics

Unit I

Associative algebra – Group algebras – Endomorphism algebra- Matrix algebras- Quaternion algebra – Finite dimensional algebras – Quaternion algebras-Isomorphism of Quaternion algebras.

Unit II

Modules – Changes of scalars – Lattice of Sub modules – Simple modules – Semi simple modules – structure of semi simple modules – Chain conditions – The Radical of ring – tensor product of modules.

Unit III

Structure of semi simple algebras – Semi simple – Minimal right ideals – Simple algebras – Matrices of homeomorphisms - The density theorem – Wedderburn structure theorem – Mascheke's theorem.

Unit IV

The Radical – radical of an algebra – Nakayam's Lemma – The Jacobson radical – The radical of an Artinian algebra – Nilpotent algebras – The radical of a Group algebra – Ideals in Artinian Direct decompositions – Local algebras – Fitting's lemma.

Unit V

Simple algebras – centers of simple algebras – The density theorem The Jacobson – Bourbaki theorem – Central simple algebras- The Braner Group - The Noehter – Skolem Theorem – The Double Centralizer Theorem.

Text Book

R.S.Pierce "The Associative Algebras" GIM 88, Springer Verlag 1982.

ADVANCE MATHEMATICS

Programme: M.Phil.,Maths Course Category: Core

Semester : I Hours: 5

Course Code: 17MMAC12 Credits: 5

Course Outcome:

CO1: Assimilate complex mathematical ideas and arguments

Unit I

Abstract Integration:

Set – Theoretic notations and terminology – The concept of measurability – Simple functions – Elementary properties of measures – Arithmetic on $[0, \infty]$ – integration of positive functions – integration of complex functions – The role played by sets of measure zero.

Unit II

Positive Borel Measures:

Vector spaces – Topological preliminaries – The Riesz – Representation theorem – Regularity properties of Borel measure.

Unit III

Lebesgue Measure:

Lebesgue measure – continuity properties of measurable functions.

Unit IV

L^p - Spaces:

Convex functions and inequalities – The L^p – Spaces – Approximation by continuous functions.

Unit V

Fourier transforms:

Formal properties – The inversion Theorem – The Planchered theorem – The Banach algebra L^p

Text book:

Real and Complex Analysis (III-Edition) Walter Rudin Mc Graw – Hill International Editions 1987 Chap: 1,2, 3&9

ELECTIVE -A

GRAPH THEORY

Programme: M.Phil.,Maths Course Category: Elective

Semester : I Hours: 5
Course Code: 17MMAE11 Credits: 5

Course Outcome:

CO1: Apply domination theory in installing common facility in appropriate points in town planning. Further labelling theory is used to allot radio frequency for transmission of messages.

Unit I:

Domination in Graphs – Dominating sets in graphs – Bounds on the domination number in terms of order, size, degree, diameter and girth.

Unit II:

Changing and unchanging properites of domination parameters.

Unit III:

Factorization and decomposition of Graphs – Graceful labeling of graphs – Harmomonius labeling of graphs.

Unit IV:

The Ramsey number of graphs – Turan's theorem – Rainbow Ramsey theorem.

Unit V:

Product Graphs.

Text Book:

- 1. T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc.1998.
- 2. G.Chartrand and L.Lesniak, Graphs and Digraphs, Fourth Edition, Chapman and Hall CRC, 2005.
- 3. Gary Chartand and Ping Zhang, Introduction to Graphs Theory, Tata Mcgraw-Hill, 2005
- 4. A Text Book of Graph Theory Volume I and II by R.Balakrishan and Renganathan.

Reference Books:

- 1. V.R.Kuli, Theory of domination in graphs, Vishwa International Publications, Gulbarga, 2010.
- 2. K.R.Parthasarathy, Basic Graph Theory, Tata Mcgraw Hill Publishing Company, 1994
- 3. Douglas West, Introduction in Graph Theory, Prentice, Hall of India, 2010.

ELECTIVE -B - STOCHASTIC PROCESS

Programme: M.Phil., Maths Course Category: Elective

Semester : I Hours: 5 Course Code: 17MMAE12 Credits: 4

Unit 1:

Random Variables and Stochastic Process

Generating Functions Laplace Transform Laplace (stileltjes) Transform of a Probability ,Distribution of a random classification of Distribution stochastic Process An Introduction.

Unit 2:

Markov Chains

Definition and examples – Higher Transition Probabilities –Sequence of Chain dependent -Trails-Classification of states and chains-Determination of higher transition probabilities-Stability of a Markov System-Graph theoretic approach-Markov chain with Denumerable number Of states.

Unit 3:

Markov process with discrete scale space Poisson process and its Extensions

Poisson process- Poisson process and Related Distributions- Generalization of Poisson process -Birth and Death process- Markov process with Discrete state space(Continuous Time Markov Chain)

Unit 4:

Markov process with Continuous states space

Introduction- Brownian motion-Wiener process- Differential Equations for a Wiener process-Kolmogorov Equation- First passage Time Distribution for Wiener process,Ornstein- Uhlenbeck Process

Unit 5:

Martingales

Introduction- Defintions and examples- properties of martingales- Continuous parameter Martingales

Text Book

J.Medhi "Stochastic processes" (2 nd Edition) New age International Pvt Publisher- 2009

DISSERTATION

Programme : M. Phil., Mathematics Part : Dissertation

Semester : II Hours : 6 Course Code : 17MMACEV Credits : 8

Course Outcomes

CO1: Formulate a research a topic

CO2: Familiar with the various stages of research process

CO3: Ability to analyze and evaluate the chosen topics

In the II semester the students have to write a dissertation. Regular attendance is compulsory.

(200 marks: Dissertation 150 and Viva voce 50)