HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai) (Re-Accredited at "A" Grade by NAAC, Banglore)

UTHAMAPALAYAM - 625533

DEPARTMENT OF MICROBIOLOGY

BACHELOR OF SCIENCE - MICROBIOLOGY

SYLLABUS

(Effect from the Academic Year 2017 – 2018 Onwards)

PROGRAMME SPECIFIC OUTCOMES:

- PSO1. Understand the basic concepts of microorganisms
- PSO2. Elicit analytical and practical skills in basic and applied microbiological techniques
- PSO3. Illustrate guidelines for quality control in various industries such as food, pharmaceutical and diagnosis of infectious diseases
- PSO4. Demonstrate skills for self employment in the areas of mushroom cultivation, production of bio fertilizer and establishment of a diagnostic centre

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE (AUTONOMOUS)

UTHAMAPALAYAM

Choice based credit system

B.Sc., Microbiology (Semester) Programme Scheme & of Scheme of Examinations (Effective from the academic year 2017-2018 onwards)

Qualification : Passed in H. Sc., or any other Examination accepted by the Syndicate as Equivalent

Duration of the course : B.Sc., Microbiology-3 Academic Years (6 Semesters)

SUBJECTS OF STUDY:

Part I :	Tamil/Arabic/Malayalam
Part II :	English
Part III :	I) Core subject-Microbiology
	II) Allied subjects
Part IV :	I) Non- major elective subjects
	II) Skill based subjects
	III) Environmental studies
	IV) Value Education
Part V :	Extension Activities

EVALUATION:

Theory: Internal – 25 marks	Practical: Internal – 40 marks
External – 75 marks	External – 60 marks
Total – 100 marks	Total – 100 marks

Internal 25 marks will be as follows:

Pattern of Continuous Internal Assessment Examinations (CIAE)

Average of Two Internal Tests (each 20 marks) - 20 Marks

Assignments - 05 Marks

Total - 25 Marks

External 75 marks will be as follows:

Section A - 10 x 1 = 10 (Objective type – Multiple choice. Two questions from each Unit) Section B - 5 x 7 = 35 (Either A (or) B ,from all five units.)

Section $C - 3 \times 10 = 30$ (Three out of five questions – one from each unit)

External Examination: 75 Marks - Time: 3 hours.

The pattern of External Examination Question Paper for **Part I, Part III and IV** will be as follows :

Section – A (10 X 1 = 10 Marks)

Question numbers 1 to 10 - Answer all questions. (multiple choice) Two questions from each unit. Four choices in each question.

Section – B (5 X 7 = 35 Marks)

Question numbers 11to 15. Answer all questions choosing either A or B. One question from each unit.

11 A or 11 B 12 A or 12 B 13 A or 13 B 14 A or 14 B 15 A or 15 B

Section – C (3 X 10 = 30 Marks)

Question numbers 16 to 20. Answer any three out of five. One question from each unit.

The pattern of External Examination Question Paper for Part II will be as follows :

Section – A: Prose	16 Marks.
Section – B: Poetry	11 Marks.
Section – C: Short Story	13 Marks.
Section – D: Grammar	19 Marks.
Section – E: Composition	16 Marks.

The pattern of External Examination Question Paper for **Part IV Environmental Studies and Value Education** will be as follows :

Section – A: ($5 \times 6 = 30$ Marks) Question numbers 1 to 5 – Answer all questions choosing either (a) or (b). One question from each unit. Descriptive Type – 100 words each.

Section – B (3 X 15 = 45 Marks) Question numbers 6 to 10. Answer any three out of five. One question from each unit. Descriptive and Analytical Type – 250 words each.

	PART	COURSE CODE	COURSE CATEGORY Title of the Cour		Hours	credits	Marks allotted		
SEM				Title of the Course			Inter nal	Exter nal	Total
				SE	MESTER	I			
	I	17UTAL11/ 17UARL11/ 17UMLL11	Language I	Tamil / Arabic / Malayalam - Paper I	6	3	25	75	100
	П	17UENL11	Language II	English – Paper I	6	3	25	75	100
		17UMBC11	Core	Core I :General Microbiology	4	4	25	75	100
I	ш		Core	Core Lab I : Major Practical I	4*				
			Allied	Allied I : Chemistry I	4	4	25	75	100
			Allied	Allied lab I: Chemistry practical I	2*				
	IV	17UMBS11	SBS	SBS-I Diagnostic Microbiology	2	2	25	75	100
		17UMBN11	NME	NME-I Mushroom Technology	2	2	25	75	100
				Total	30	18	150	450	600
				SEMESTER II	[1		II	
	I	17UTAL21/ 17UARL21/ 17UMLL11	Language I	Tamil /Arabic / Malayalam – Paper II	6	3	25	75	100
	II	17UENL21	Language II	English – Paper II	6	3	25	75	100
		17UMBC21	Core	Core II : Biochemistry	4	4	25	75	100
п	ш	17UMBC2P	Core	Core Lab : Major Practical I	4	4	40	60	100
	m	17UCHA21	Allied	Allied II :Chemistry II	4	4	25	75	100
		17UCHA2P	Allied	Allied lab: Chemistry practical I	2	1	40	60	100
	IV	17UMBS21	SBS	SBS-II Dairy Technology	2	2	25	75	100
		17UMBN21	NME	NME-II Food and Dairy microbiology	2	2	25	75	100
		I		Total	30	23	230	570	800

SEM	PART	COURSE CODE	COURSE CATEGORY	Title of the Course	1	credits	Marks allotted			
SEM					hours	creuts	Intern al	Exter nal	Total	
				SEMESTER III						
	Ι	17UTAL31/ 17UARL31/ 17UMAL31	Language I	Tamil /Arabic/ Malayalam Paper III	6	3	25	75	100	
	II	17UENL31	Language II	English–Paper III	6	3	25	75	100	
		17UMBC31	Core	Core III - Molecular Biology and Microbial Genetics	4	4	25	75	100	
III			Core	Core lab II: Major Practical II	2*					
		17UCHA31	Allied	Allied I : Chemistry III	4	4	25	75	100	
	III		Allied	Allied lab I: Chemistry practical II	2*					
		17UMBA31	Allied	Allied II - General Biology	4	4	25	75	100	
			Allied	Allied lab II - Biology Practical-I	2*					
				Total	30	18	125	375	500	
			l	SEMESTER 1	IV	1	1			
	I	17UTAL41/ 17UARL41/ 17UMAL41	Language I	Tamil/Arabic/ Malayalam – Paper IV	6	3	25	75	100	
	п	17UENL41	Language II	English–Paper IV	6	3	25	75	100	
	ш	17UMBC41	Core	Core IV - Immunology	4	4	25	75	100	
			17UMBC4P	Core	Core lab - Major Practical II	2	2	40	60	100
IV		17UCHA41	Allied	Allied I : Chemistry IV	4	4	25	75	100	
		III	17UCHA4P	Allied	Allied lab I: Chemistry practical II	2	1	40	60	100
		17UMBA41	Allied	Allied II- Cell biology	4	4	25	75	100	
		17UMBA4P	Allied	Allied lab II - Biology Practical-I	2	1	40	60	100	
	V		EA	Extension activities		2		-	100	
			I	Total	30	24	245	555	800	

							N	Aarks allotte	d
SEM	PART	COURSE CODE	COURSE CATEGORY	Title of the Course	hour	credits -	Intern al	External	Total
				SEI	MESTEI	R V			
		17UMBC51	Core	Core V - Medical Microbiology	4	4	25	75	100
		17UMBC52	Core	Core VI Agriculture and Environmental microbiology	4	4	25	75	100
	PART III	17UMBE51	Elective	Elective –I- Bioinformatics			25		100
Ι		17UMBE52	Elective	Elective-II Microbial Physiology	4	4	25	75	100
			Core	Core lab III - Major practical III	8				
		17UMBA51	Allied	Allied II-Genetics and Biostatistics	4	4	25	75	100
			Allied	Allied lab II - Biology Practical-II	2*				
	PART IV	17UMBS51	SBS	SBS V : Bio chemical Techniques	2	2	25	75	100
!	 '	17UEVS51	EVS	Environmental Studies	2	2	25	75	100
			l	Total	30	20	150	450	600
					SEM	ESTER VI	1		
		17UMBC61	Core	Core VII– Recombinant DNA Technology	6	6	25	75	100
	!	17UMBE61	Elective	Elective III – Industrial & Food Microbiology	6	6	25	75	100
	PART	17UMBE62	Elective	Elective IV- Medical Lab Technology		Ŭ			100
	Ш	17UMBC6P	Core	Core lab III - Major practical III	-	8	40	60	100
		17UMBC6Q	Core	Core lab III - Major practical IV	8	8	40	60	100
	!	17UMBA61	Allied	Allied II- Environmental Biology	4	4	25	75	100
	!	17UMBA6P	Allied	Allied lab II - Biology Practical-II	2	1	40	60	100
	PART IV	17UMBS61	SBS	SBS VI –Enzymology and Enzyme technology	2	2	25	75	100
	1	17UVED61	VE	Value education	2	2	25	75	100
	<u> </u>			Total	30	37	345	555	900
! .				Grand total	180	140	1245	2955	4200

GENERAL MICROBIOLOGY

Programme : B.Sc., Microbiology Semester : I Course Code : 17UMBC11 Part : III Core - I Hours : 4 Credits: 4

Course outcomes:

CO1: To understand the basic concepts in Microbiology. CO2: To understand the basic structure and features of microbes.

Unit I

Introduction – Definition, scope and history of Microbiology. Contributions of Leeuwenhoek, Jenner, Spallanzani, Louis Pasteur, John Needham and Robert Koch. Classification of microorganisms - Difference between the prokaryotic and eukaryotic microorganisms.– general principles and nomenclature – Haeckel's three kingdom concept, Whittaker's five kingdom concept.

Unit II

Microscopy – simple, compound microscope, dark field microscope, electron and phase contrast microscopes – parts, functions and applications- Resolving power, Numerical aperture etc.,

Unit III

Prokaryotes – bacteria, archea, actinomycetes, structure and functions of cell and cellular components, slime, capsule, pili, flagella, cell wall, cytoplasmic membrane, mesosomes, ribosome, nucleoid and other cytoplasmic inclusions.

Unit IV

Salient features of Algae, structure and reproduction of Chlamydomonas, Chlorella, Euglena. Salient features of fungal morphology, structures and reproduction; *Rhizopus, Penicillium and Saccharomyces*,

Unit V

Salient features of Bacteria: *Bacillus, E. coli, Salmonella*, and *Streptomycetes* Viruses: T4, TMV, and HIV. Protozoa: *Plasmodium*.

References

- 1. Prescott, Harley and Klein. 2006. Microbiology 6/e. The McGraw-Hill Companies.
- 2. Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. 1993. Microbiology. Tata McGraw Hill Publishing Co., Ltd., New Delhi.
- 3. Schlegel, H.G.1993. General Microbiology. Cambridge University Press, Cambridge.
- 4. Stainer, R.Y., Ingraham, Wheelis, M.G. and Paintor, P.R.1986. The Microbial World. Prentice Hall, New Jersey.

MAJOR PRACTICAL – I -LAB

Programme : B.Sc., Microbiology Semester : I Course Code : Part: III Core Lab-I Hours : 4 Credits: 4

Course outcome

CO1: To introduce the basic handling techniques in Microbiology. CO2: To understand the basics techniques in biochemistry.

Basic Microbiology

- 1. Parts, working principle and applications of compound microscope
- 2. Sterilization methods: moist heat, dry heat, filtration, disinfectants
- 3. Isolation of bacteria and fungi from environmental samples
- 4. Measurement of bacterial size by micrometry method
- 5. Pure culture techniques: streak, spread and pour plate methods
- 6. Observation of bacterial motility by hanging drop method
- 7. Staining methods: Gram-staining, endospore-staining

Biochemical tests for bacterial identification

- 1. Carbohydrate fermentation
- 2. IMVIC tests
- 3. Catalase test
- 4. Oxidase test
- 5. Starch and Protein hydrolysis.

Reference

- 1. P.Gunasekaran, Microbiology: A Laboratory manual, New Age international publishers, 1996.
- 2. N.Kannan, A Laboratory manual in general microbiology, Panima publishers, 2002.
- 3. P.Palanivelu, Analytical Biochemistry & Separation Techniques, 3rd edition 21st century publications ,Palkalai nagar, Madurai.
- 4. J.Jayaraman, Laboratory manual in Biochemistry, 5/e, New age international publishers, 1996.

ANCILLARY CHEMISTRY PAPER -I

Organic, Inorganic and Physical chemistry

Programme : UG Semester : I Course code : 17UCHA11 Part : III Hours : 4 Credits: 4

Course outcomes

CO1: To Explain about the fundamentals & states of matter.

CO2: To knows about the way of bond breaking & making. How which leads to the formation of various types of biologically & economically important compounds.

Unit I

a) **HYDROGEN**: Isotopes of hydrogen-preparation, properties and uses of heavy hydrogen- ortho and para hydrogen-hydrides-definition-classification-examples.

b) Oxides: Definition-classification-examples.

c) Water: Hardness of water-types of hardness-removal of hardness – removal of hardness – industrial implications of hardness in water-estimation by EDTA method (outline only) –units of hardness of water.

Unit II

a) Detection of nitrogen and halogen in organic compounds – empirical formula - molecular formula – structural formula – simple calculation.

b) Nature of valency of carbon in organic compounds – tetrahedral arrangement of valency of carbon – bond breaking and bond forming in organic reaction – hemolytic cleavage – heterolytic cleavage – reaction intermediates – formation, stability and reactions of carbocation, carbanion and free radicals.

c) Nucleophiles – Electrophiles: Definition, types and examples.

d) **Types of reaction**: Substitution – addition – elimination - rearrangement and polymerization – illustration with examples.

Unit III

a) Gaseous state: Postulates of kinetic theory of gases – derivation of expression for pressure for an ideal gas on the basis of kinetic theory – deducing the basic gas laws.

b) **Deviation of real gases** from ideal behavior – reasons for deviation – derivation of vander walls equation – explanation of behavior of real gases on the basis of vander walls equation.

c) Liquefaction of gases: critical phenomenon – modern methods – Joule-Thomson effects – Inversion temperature.

Unit IV

a) Bonding: V.B Theory – postulates of V.B Theory – application to the formation of simple molecules like H_2 and O_2 – overlap of atomic orbitals – s-s , s-p and p-p overlap – principle of hybridization – sp,sp² and sp³ hybridization – VSEPR theory.

b) M.O Theory: Formation of M.O's – bonding, anti-bonding and non-bonding M.O's – M.O diagram for H_2 , He and F_2 .

Unit V

Colloids

a) Colloidal state of matter – various types – classification.

b) Sols – dialysis – electro-osmosis – electrophoresis – stability of colloids – protective action – Hardy-schulze law – gold number.

c) Emulsion: Types of emulsion – emulsifiers with examples.

d) Gels: Classification, preparation.

e) Application of colloids.

BOOKS RECOMMENDED:

- 1. Essential of physical chemistry: ArunBhal, B.S.Bhal, G.D.Tuli (revised edition, S.Chand,2010)
- 2. Principles of physical chemistry: Puri, Sharma, Pathania (revised edition, Vishal pub., 2010)
- 3. Modern Inorganic chemistry: R.D Madan (Revised edition, S.Chand, 2010)
- 4. A Text book of organic chemistry: ArunBhal, B.S.Bhal, G.D.Tuli (revised edition, S.Chand, 2010).

ANCILLARY CHEMISTRY PRACTICAL-I

Inorganic Quantitative Analysis

Programme : UG Semester : I Course code : Part : III Hours : 2 Credits: 2

Course outcomes

- CO1 Gain the knowledge about fundamental formulas, calculations for Normality, Molarity, equivalent weights.
- CO 2 Different types of titrations using external indicators & self indicators.

a. ACIDIMETRY AND ALKALIMETRY

- 1. Titration between a strong acid and strong base
- 2. Titration between a strong acid and weak base
- 3. Titration between a weak acid and strong base.

b. PERMANGANIMETRY

1. Titration between permanganate with oxalic acid, Ferrous sulphate and ferrous ammonium sulphate(Mohr's salt)

c. IODOMETRY

1. Titration of sodium thiosulphate with potassium permanganate and potassium dichromate.

DIAGNOSTIC MICROBIOLOGY

Programme : B.Sc., Microbiology Semester : I Course Code : 17UMBS11 Part : IV SBS - I Hours : 2 Credits: 2

Course outcomes:

CO1: To introduce laboratory principles and safety methods to the students CO2: To familiarize the students about clinical diagnosis of diseases.

Unit I

Role of Microbiology Lab-safety regulations. Types, collection and handling of specimens. Preparation of serum and plasma.

Unit II

Laboratory identification of infectious agents. Staining techniques: simple, Gram, acid-fast and spore staining.

Unit III

Diagnosis of mycotic infection- skin infection and parasitic infection-amoebiasis.

Unit IV

Microbiological analysis of different types of clinical specimens: urine, stool, pus and throat swab.

Unit V

Determination of minimal inhibitory concentration (MIC) of antibiotics. Antimicrobial susceptibility tests

References:

Mukherjee, KL., 1988, Medical Laboratory Technology Volumes-I to III, Tata McGraw-Hill Publishing Company Limited, New Delhi

MUSHROOM TECHNOLOGY

Programme : B.Sc., Microbiology Semester : I Course Code : 17UMBN11 Part : IV NME - I Hours : 2 Credits: 2

Course outcomes:

CO1: To create awareness among the students about mushroom cultivation

CO2: To promote the mushroom production in student communities through training, spawn production.

Unit I

History of mushrooms- Major genera of edible mushrooms - Structure and key for identification of mushrooms.

Unit II

Food values of mushroom – Medicinal values of mushrooms- Economic importance of mushroom.

Unit III

Substrate for mushroom production-composting methods-long and short time method-Methods of cultivation of mushrooms-oyster mushroom and paddy straw mushroom.

Unit IV

Diseases of mushroom-Fungal diseases- soft mildew, brown plaster mold, white plaster mold, olive green mold, inky cap, truffle disease, bubble disease, brown spot disease - Insect pest of mushroom – sciarids, phorids, spring tails, cecid, mites and nematodes .

Unit V

Poisonous mushrooms - Amanita, Boletus, Clitocybe, and Coprinus -Identification of Poisonous mushrooms.

References

1. Nitabhal, Mushroom Technology, orient longman publications.

2. Pathak V.N ,Nagendra Yadav and Maneesh Gaur,Mushroom production and processing technology /Vedams Ebooks Pvt Ltd,NewDelhi(2000)

BIOCHEMISTRY

Programme : B.Sc., Microbiology Semester : II Course Code : 17UMBS21 Part : III-Core Hours : 2 Credits: 2

Course outcomes:

CO1: To create awareness about the importance of Biomolecules. CO2: To understand the importance of different pathway.

Unit I

Water and Life -pH and Buffers. Oxidation and reduction reactions, redox potential, free energy and reaction, ATP energetics.

Unit II

Carbohydrates-Classification-Monosaccharides (glucose, fructose), Disaccharides (lactose, sucrose) Polysaccharides (starch, cellulose). Metabolism - Embden-Meyerhof-Parnas, Entner-Doudoroff, Pentose Phosphate pathways - TCA cycle.

Unit III

Lipids: Physical and Chemical properties of fatty acids- Nomenclature of fatty acids- Phospholipids-Spingolipids- Lipoproteins, Oxidation of fatty acids (β-Oxidation)

Unit IV

Proteins: Structure, Classification, properties of proteins. Primary, secondary, tertiary and quaternary structures of proteins.

Unit V

Nucleic acids: Components, Double helical structure- Nucleic acid denaturation- Classes of nucleic acids.

References:

- 1. Lehninger, AL., Principles of Biochemistry. 1993, 2nd edition, CSB Publishers.
- 2. Conn, E.E., Stumpf, P.K, Bruening, G and Doi, Outlines of Biochemistry, 5/e –R.H, John Wiley & Sons (1987)
- 3. Voet, D and Voet, JG, Biochemistry, 1990, John Wiley & Sons, NY.
- 4. Stryer, L., Biochemistry, 2/e, 1998, W.H. Freeman and Company, NY.
- 5. P. Palanivelu, Enzymes, Ribozymes and DNAzymes, 2007, Twentyfirst Century Publications, Palkalai Nagar, Madurai 625 021.

MAJOR PRACTICAL – I

Programme : B.Sc., Microbiology Semester : II Course Code : 17UMBC2P Part : IV CORE-II Hours : 4 Credits : 4

Course outcomes:

CO1: To introduce the basic handling techniques in Microbiology. CO2: To understand the basics techniques in biochemistry.

Basic Microbiology

- 8. Parts, working principle and applications of compound microscope
- 9. Sterilization methods: moist heat, dry heat, filtration, disinfectants
- 10. Isolation of bacteria and fungi from environmental samples
- 11. Measurement of bacterial size by micrometry method
- 12. Pure culture techniques: streak, spread and pour plate methods
- 13. Observation of bacterial motility by hanging drop method
- 14. Staining methods: Gram-staining, endospore-staining

Biochemical tests for bacterial identification

- 6. Carbohydrate fermentation
- 7. IMVIC tests
- 8. Catalase test
- 9. Oxidase test
- 10. Starch and Protein hydrolysis.

Reference

- 5. P.Gunasekaran, Microbiology: A Laboratory manual, New Age international publishers, 1996.
- 6. N.Kannan, A Laboratory manual in general microbiology, Panima publishers, 2002.
- 7. P.Palanivelu, Analytical Biochemistry & Separation Techniques, 3rd edition 21st century publications ,Palkalai nagar, Madurai.
- 8. J.Jayaraman, Laboratory manual in Biochemistry, 5/e, New age international publishers, 1996.

ANCILLARY CHEMISTRY PAPER -II

Organic, Inorganic and Physical chemistry

Programme : UG Semester : II Course code : 17UCHA21 Part : III Hours : 4 Credits: 4

Course outcomes

CO 1:Explain the fundamentals & states of matter.

CO 2:To knows about the way of bond breaking & making. How which leads to the formation of various types of biologically & economically important compounds.

Unit I

a) **HYDROGEN**: Isotopes of hydrogen-preparation, properties and uses of heavy hydrogen- ortho and para hydrogen-hydrides-definition-classification-examples.

b) Oxides: Definition-classification-examples.

c) Water: Hardness of water-types of hardness-removal of hardness – removal of hardness – industrial implications of hardness in water-estimation by EDTA method (outline only) –units of hardness of water.

Unit II

a) Detection of nitrogen and halogen in organic compounds – empirical formula - molecular formula – structural formula – simple calculation.

b) Nature of valency of carbon in organic compounds – tetrahedral arrangement of valency of carbon – bond breaking and bond forming in organic reaction – hemolytic cleavage – heterolytic cleavage – reaction intermediates – formation, stability and reactions of carbocation, carbanion and free radicals.

c) Nucleophiles – Electrophiles: Definition, types and examples.

d) **Types of reaction**: Substitution – addition – elimination - rearrangement and polymerization – illustration with examples.

Unit III

a) Gaseous state: Postulates of kinetic theory of gases – derivation of expression for pressure for an ideal gas on the basis of kinetic theory – deducing the basic gas laws.

b) **Deviation of real gases** from ideal behavior – reasons for deviation – derivation of vander walls equation – explanation of behavior of real gases on the basis of vander walls equation.

c) Liquefaction of gases: critical phenomenon – modern methods – Joule-Thomson effects – Inversion temperature.

Unit IV

a) Bonding: V.B Theory – postulates of V.B Theory – application to the formation of simple molecules like H_2 and O_2 – overlap of atomic orbitals – s-s , s-p and p-p overlap – principle of hybridization – sp,sp² and sp³ hybridization – VSEPR theory.

b) M.O Theory: Formation of M.O's – bonding, anti-bonding and non-bonding M.O's – M.O diagram for H_2 , He and F_2 .

Unit V

Colloids

a) Colloidal state of matter – various types – classification.

b) Sols – dialysis – electro-osmosis – electrophoresis – stability of colloids – protective action – Hardy-schulze law – gold number.

c) Emulsion: Types of emulsion – emulsifiers with examples.

d) Gels: Classification, preparation.

e) Application of colloids.

BOOKS RECOMMENDED:

- 5. Essential of physical chemistry: ArunBhal, B.S.Bhal, G.D.Tuli (revised edition, S.Chand,2010)
- 6. Principles of physical chemistry: Puri, Sharma, Pathania (revised edition, Vishal pub., 2010)
- 7. Modern Inorganic chemistry: R.D Madan (Revised edition, S.Chand, 2010)
- 8. A Text book of organic chemistry: ArunBhal, B.S.Bhal, G.D.Tuli (revised edition, S.Chand, 2010).

ANCILLARY CHEMISTRY PRACTICAL-I

Inorganic quantitative analysis

Programme	: UG	Part : III
Semester	: II	Hours: 2
Course code	: 17UCHA2P	Credits: 2

Course outcomes:

CO 1 Gain the knowledge about fundamental formulas, calculations for Normality, Molarity, equivalent weights.

CO 2 Different types of titrations using external indicators & self indicators.

d. ACIDIMETRY AND ALKALIMETRY

- 4. Titration between a strong acid and strong base
- 5. Titration between a strong acid and weak base
- 6. Titration between a weak acid and strong base.

e. PERMANGANIMETRY

2. Titration between permanganate with oxalic acid, Ferrous sulphate and ferrous ammonium sulphate(Mohr's salt)

f. IODOMETRY

2. Titration of sodium thiosulphate with potassium permanganate and potassium dichromate.

DAIRY TECHNOLOGY

Programme : B.Sc., Microbiology Semester : II Course Code : 17UMBS21 Part : IV SBS -II Hours : 2 Credits: 2

Course outcomes:

CO1: To encourage and promote the students in the field of dairy technology for their career.

CO2: To promote and participate the students in every way in the economic development of dairy industry.

Unit I

Milk-Physiochemical properties of milk-microbiology of milk-Factors affecting composition of milk-food and nutritive value of milk.

Unit II

Special Milk-Homogenized milk, flavoured milk and fermented milk-Flavour defects in milk, their causes and prevention.

Unit III

Dried Milk-milk drying system-cold treatment, Drum drying system, spray drying system.

Unit IV

Cheese –Types-Preparation of Swiss cheese, cheddar cheese-defects in cheese causes and prevention.

Unit V

Indian dairy products-Kheer, Khoa, Panir, Ghee- preparation and preservation-quality analysis of dairy products-various agencies in Quality management-FDA,WHO,AGMARK,ISI-HACCP,GMP.

Reference

1.Sukumar De., 1997 Outlines of Dairy technology, Oxford university press.

2.William C Frazier et al,Food Microbiology 4th edition Tata McGraw-Hill publications.

FOOD AND DAIRY MICROBIOLOGY

Programme : B.Sc., Microbiology Semester : II Course Code : 17UMBN21 Part : IV NME -II Hours : 2 Credits: 2

Course outcomes:

CO1: To create awareness among the students about Food and Dairy Microbiology CO2: To promote the importance of Food preservation and Spoilage.

Unit I

Importance of Food and Dairy Microbiology- Food as substrate for microbial growth- intrinsic and extrinsic factors affecting growth and survival of microorganism in foods.

Unit II

Contamination of cereals, milk, egg by microorganisms. Features of food spoilage like fruits, vegetables, milk and milk products.

Unit III

Milk sterilization techniques, Phosphatase test- Spoilage of bread and cereals, meat, fish and poultry.

Unit IV

Food preservation by removal of microorganisms, low temperature, high temperature, irradiation and chemical methods.

Unit V

Food borne infection, food borne intoxications. Detection of food-borne pathogens.

References

- 1. Adams. MR and Moss, MO. 2005. Food Microbiology, New age International Pvt. Ltd publications.
- 2. Frazier, WC and Westhoff DC. 2003. Food Microbiology, 4th edition, McGrawHill, NewYork.
- 3. Hobbs BC and Roberts D 1993. Food Poisoning and Food Hygiene. Edwards Arnold, London.
- 4. Yousef, AE and Carlstrom C. 2003. Food Microbiology-A Laboratory manual, Wiley Interscience.
- 5. Jay JM, 2000. Modern Food Microbiology, Aspen Publishers.
- 6. Robinson, R.K.1990. Dairy Microbiology, Elsevier Applied Science, London.

MOLECULAR BIOLOGY & MICROBIAL GENETICS

Programme : B.Sc., Microbiology Semester : III Course Code : 17UMBC31 Part :III CORE-III Hours : 4 Credits: 4

Course outcomes:

CO1: To make the students understand the central dogma of life. CO2: To familiarize the basic concepts of Molecular Biology & Microbial Genetics.

Unit I

Structural aspects of DNA and RNA - double helical model- various forms of DNA- tRNA-rRNA-Genome organization - Eukaryotes.

Unit II

Replication- Semi conservative mode of replication- Enzymology of Replication- The processes of DNA replication-Eukaryotic replication

Unit III

Transcription - prokaryotes and Eukaryotes - Enzymology of Transcription- process of transcription in prokaryotes and Eukaryotes – initiation, elongation and termination- factors involved.

Unit IV

Translation- Translation in prokaryotes - Enzymology of Translation- process of translation in prokaryotes – initiation, elongation and termination- factors involved. The triplet nature of genetic codon

Unit V

Transformation –Griffith experiment-conjugation ($F^+ x F^-$, $Hfr^+ x F^-$) Transduction –generalized and specialized.

References

- 1. Benjamin Lewin, Gene VII, 2000: Oxford University Press.
- 2. Watson, Hopkins, Roserts, Steits and Weiner, Molecular biology of the Gene,4/e, 1987, The Benjamin/Cumming Publishing Company, Inc.
- 3. Larry Snyder and Wendy Champness, Molecular Genetics of Bacteria,2/e, , 2003. ASM press, Washington DC.
- 4. David Friefelder, Molecular Biology, 1987, Narosa Publishing House.

MAJOR PRACTICAL-II

Programme : B.Sc., Microbiology Semester : III Course Code : Part:III CORE-LAB Hours : 2 Credits: 2

Course outcomes:

CO1: To familiarize the students in molecular biological techniques. CO2: To understand the basics techniques in immunology.

- 1. pH meter- principle and measurements
- 2. Estimation of Carbohydrates
- 3. Estimation of Proteins (Lowry's method)
- 4. Separation of amino acids by Paper chromatography
- 5. Isolation of DNA from *E.coli*.
- 6. Separation of DNA by Agarose gel electrophoresis.
- 7. Separation of Proteins by SDS-PAGE.
- 8. Separation of serum/plasma.
- 9. Blood cell count: RBC count, WBC count total and differential
- 10. Blood typing: ABO, Rh.
- 11. Agglutination tests: Widal test.
- 12. Precipitation: Ouchterlony's double immune diffusion.
- 13. Immuno electrophoresis

ANCILLARY CHEMISTRY PAPER – III

Organic, Inorganic and Physical chemistry

Programme : B.Sc.Microbiology Semester : IV Course code : 17UCHA41

Part : III- Allied-Hours : 4 Credits: 4

Course outcomes

- **CO 1:** Amplification of essential conditions required for the photo induced chemical reactions & the cram application of photo physical phenomenon.
- **CO 2:** Clear sectioning of applied chemistry for smoothen life & know about natural sources available for those chemical grounding.

Unit I

a)Adsorption: Definition – differences between adsorption and absorption – adsorbate, adsorbent – physical adsorption – chemical adsorption – differences between these two types – factor influencing adsorption – adsorption isotherm – Langmuir isotherm (no derivation statement only) – adsorption of gases on solid surface.

Unit II

a) Catalysis: Definition – different types of catalysis – acid-base catalysis – surface catalyzed reactions – definition and examples of auto catalyst – catalytic poisoning – promoters – enzyme catalysis – characteristics.

b) Polymers: Definition – classification of polymers – properties of polymers – addition and condensation polymerization reactions with examples – natural rubber – isoprene unit – vulcanization of rubber – preparation and applications of polystyrene, urea-formaldehyde resin, Teflon and buna-s rubber.

Unit III

a) **Photochemistry**: Comparison of thermal and photochemical reactions – definition of photochemical reactions – laws of photochemistry – Grothu's- Draper law quantum efficiency – reasons for low and high quantum yield with examples – consequences of light absorption by atoms and molecules – Jablonski diagram – fluorescence – phosphorescence – photosensitization – chemiluminescence – bioluminescence – application of photo chemistry.

Unit IV

a) Coordination compounds: Definition – nomenclature - definition of various terms involved in coordination chemistry – Werner's theory – EAN rule – VB theory (outline only) – Nickel carbonyls - chelates.

Unit V

Fertilizers: Plant Nutrient – Role of NPK in plant growth – classification of fertilizers – natural and chemical fertilizers – urea – super phosphate – triple super phosphate – potassium nitrate – potassium chloride – ammonium nitrate – calcium ammonium nitrate (CAN) and complex fertilizers – fertilizer industry in India.

BOOKS RECOMMENDED:

- 1. Essential of physical chemistry: ArunBhal, B.S.Bhal, G.D.Tuli (revised edition, S.Chand,2010)
- 2. Principles of physical chemistry: Puri, Sharma, Pathania (revised edition, Vishal pub., 2010)
- 3. Modern Inorganic chemistry: R.D Madan (Revised edition, S.Chand, 2010)
- 4. A Text book of organic chemistry: ArunBhal, B.S.Bhal, G.D.Tuli (revised edition, S.Chand, 2010).

ANCILLARY CHEMISTRY PRACTICALS-II

Organic analysis

Programme : B.Sc.Microbiology Semester : IV Course code : 17UCHA4P Part : III Hours : 2 Credits: 2

Course outcome:

CO 1 To know the detection of special elements, functional groups identification in organic compounds.

Analysis of organic compound containing one / two functional groups and conformation by the preparation of a solid derivative / colour reactions – acids, phenols, aldehydes, esters, amines(primary, secondary and tertiary), amides, anilides, aliphatic diamide and monosaccharide.

GENERAL BIOLOGY

Programme : B.Sc., Microbiology Semester : III Course Code : 17UMBA31 Part: IV ALLIED-II Hours : 4 Credits: 4

Course outcomes:

CO1: To introduce about the classification and physiology of plants. CO2: To understand the physiology of human system.

Unit –I

Basis of classification-units of classification-Species, Genus, Family-Nomenclature-Binomial system.Bentham and hooker system of classification of plants.

Unit-II

Morphology, structure and reproduction of plants. Algae-General characters and classificationsargassum as an example. Fungi- General characters and classification-Yeast as an example. Bryophytes-General characters and classification-Funaria as an example.

Unit III

Pteridophytes-selaginella, heterospory and seed habit. Gymnosperm-Pinus-economic uses of gymnosperm. Angiosperm-Monocot plant-Allium sp, Dicot plant-Tribulus terrestris.

Unit IV

Human physiology-Structure and function of Digestive system-Respiratory system-circulatory system-Blood and their properties-Excretory system.

Unit V

Muscular system-Nervous system-Endocrine glands-Reproductive system- Hormones-menstrual cycle.

References:

1.A.C Dutta, Botany for Degree students, Oxford university press.

2.W.T.tailor and R.J.Wehe-General Biology, East West press pvt ltd.

3.E.L.Jordan and verma.Invertebrate Zollogy,S.Chandra &Co,New Delhi.

4. E.L.Jordan and verma.Chordate Zollogy,S.Chandra &Co,New Delhi.

ANCILLARY BIOLOGY PRACTICAL -I

Programme : B.Sc.Microbiology Semester : III Course code : 17UMBA3P

Part : III Hours : 2 Credits: 2

Course outcome

CO1: To introduce about the basic structure of cell.

CO2: To understand the mechanism of various cell regulation.

Botany

1. Vegetative structure and reproductive structure in sargassum, yeast, funaria, seleginella and pinus (section

cutting of sargassum and seleginella, pinus stem and needles)

2.structure of monocot flower-Allium cepa

3.structure of Dicot flower-Tribulus terrestris

Zoology

1. Cockroach-external and digestive system, reproductive system and nervous system.

2. Frog-External, digestive system, urogenital system and brain (spotters only).

3. Morphology of the representative for each phylum spotters only- Amoeba, Euglena, paramecium,

Hydra, Planaria, Liverfluke, Teania, Ascaris, earthworm, Prawn, Pila, Starfish, Shark, Mugil, pigeon, rat.

4. Blood cells of man and blood vessels.

5. Study of mitosis by smear technique of *Allilum cepa* root.

- 6. Demonstration of Histochemical staining methods.
- 7. Determination of blood groups & Rh factors.

8. Determination of haemoglobulin.

IMMUNOLOGY

Programme : B.Sc.Microbiology Semester : IV Course code : 17UMBC41 Part: III-CORE-IV Hours : 4 Credits: 4

Course outcomes:

CO1: To understand the structure and functions of immune system. CO2: To promote the knowledge of Auto immune diseases.

Unit I

Elements of Immunity: Overview of the Immune system- Basic concepts in immunology (History), principles of innate and acquired immunity - Cells and organs of the immune system.

Unit II

Antigen – structure, characters, types. Antibody structure: Classification and characterization, agglutination, complement system, immune tolerance.

Unit III

Humoral and cell mediated immune response: B-cell maturation. Activation and differentiation, Major Histocompatibility complex (MHC) - antigen processing and presentation T and B cell maturation, activation and differentiation.

Unit IV

Hypersensitivity-Type I, II, III, and IV reactions. Different types of auto immunity, T, B cell, Phagocyte and NK cell associated diseases.

Unit V

Transplantation immunology: Basics of graft rejection, Tissue typing, Clinical transplantation, Tumor antigen, Immune response to tumor.

References

- 1. Roitt, I.M., Essential of immunology, 1998., ELBS, Blackwell scientific publication.
- 2. Kuby, J., Immunology, 3/e, 1997. W.H.Freeman and company, NY.
- 3. Travers. J., Immunobiology, The immune system in health and disease-3/e 1997 Garland publishers, NY.
- 4. Ananthanarayanan R. & Jayaram Panicker, C.K. Textbook of Microbiology, Orient Longman, 2005.

MAJOR PRACTICAL-II

Programme: B.Sc.MicrobiologySemester: IVCourse code: 17UMBC4P

Part:III-CORE-Lab Hours : 2 Credits: 2

Course outcomes:

CO1: To familiarize the students in molecular biological techniques. CO2: To understand the basics techniques in immunology.

- 14. pH meter- principle and measurements
- 15. Estimation of Carbohydrates
- 16. Estimation of Proteins (Lowry's method)
- 17. Separation of amino acids by Paper chromatography
- 18. Isolation of DNA from *E.coli*.
- 19. Separation of DNA by Agarose gel electrophoresis.
- 20. Separation of Proteins by SDS-PAGE.
- 21. Separation of serum/plasma.
- 22. Blood cell count: RBC count, WBC count total and differential
- 23. Blood typing: ABO, Rh.
- 24. Agglutination tests: Widal test.
- 25. Precipitation: Ouchterlony's double immune diffusion.
- 26. Immuno electrophoresis

ANCILLARY CHEMISTRY PAPER - IV

Organic, Inorganic and Physical chemistry

Programme : B.Sc.Microbiology Semester : IV Course code : 17UCHA41

Part : III-Allied Hours : 4 Credits: 4

Course outcomes

- **CO 1:** Amplification of essential conditions required for the photo induced chemical reactions & the cram application of photo physical phenomenon.
- **CO 2:** Clear sectioning of applied chemistry for smoothen life & know about natural sources available for those chemical grounding.

Unit I

a)Adsorption: Definition – differences between adsorption and absorption – adsorbate, adsorbent – physical adsorption – chemical adsorption – differences between these two types – factor influencing adsorption – adsorption isotherm – Langmuir isotherm (no derivation statement only) – adsorption of gases on solid surface.

Unit II

a) Catalysis: Definition – different types of catalysis – acid-base catalysis – surface catalyzed reactions – definition and examples of auto catalyst – catalytic poisoning – promoters – enzyme catalysis – characteristics.

b) Polymers: Definition – classification of polymers – properties of polymers – addition and condensation polymerization reactions with examples – natural rubber – isoprene unit – vulcanization of rubber – preparation and applications of polystyrene, urea-formaldehyde resin, Teflon and buna-s rubber.

Unit III

a) **Photochemistry**: Comparison of thermal and photochemical reactions – definition of photochemical reactions – laws of photochemistry – Grothu's- Draper law quantum efficiency – reasons for low and high quantum yield with examples – consequences of light absorption by atoms and molecules – Jablonski diagram – fluorescence – phosphorescence – photosensitization – chemiluminescence – bioluminescence – application of photo chemistry.

Unit IV

a) Coordination compounds: Definition – nomenclature - definition of various terms involved in coordination chemistry – Werner's theory – EAN rule – VB theory (outline only) – Nickel carbonyls - chelates.

Unit V

Fertilizers: Plant Nutrient – Role of NPK in plant growth – classification of fertilizers – natural and chemical fertilizers – urea – super phosphate – triple super phosphate – potassium nitrate – potassium chloride – ammonium nitrate – calcium ammonium nitrate (CAN) and complex fertilizers – fertilizer industry in India.

BOOKS RECOMMENDED:

- 1. Essential of physical chemistry: ArunBhal, B.S.Bhal, G.D.Tuli (revised edition, S.Chand,2010)
- 2. Principles of physical chemistry: Puri, Sharma, Pathania (revised edition, Vishal pub., 2010)
- 3. Modern Inorganic chemistry: R.D Madan (Revised edition, S.Chand, 2010)
- 4. A Text book of organic chemistry: ArunBhal, B.S.Bhal, G.D.Tuli (revised edition, S.Chand, 2010).

ANCILLARY CHEMISTRY PRACTICALS-II

Organic analysis

Programme : B.Sc.Microbiology Semester : IV Course code : 17UCHA4P Part : III-Allied Hours : 2 Credits: 2

Course outcome:

CO 1 To know the detection of special elements, functional groups identification in organic compounds.

Analysis of organic compound containing one / two functional groups and conformation by the preparation of a solid derivative / colour reactions – acids, phenols, aldehydes, esters, amines(primary, secondary and tertiary), amides, anilides, aliphatic diamide and monosaccharide.

CELL BIOLOGY

Programme : B.Sc.Microbiology Semester : IV Course code : 17UMBA41 Part:III-Allied Hours : 4 Credits: 4

Course outcomes:

CO1: To introduce about the basic structure of cell.

CO2: To understand the mechanism of various cell regulation.

Unit-I

Cell structure-Pokaryotic and eukaryotic-Plant and Animal cell-Plasmamembrane-chemistry and ultra structure-Fluid mosaic model-Protoplasm-chemistry and organization-microtubles and microfilaments

Unit-II

Cytoplasmic organells in Eukaryotes -ER, Golgicomplex ,lysosomes,Mitochondria, Chloroplast ,Ribosomes,mesosomes

Unit-III

Nucleus-structure and functions, chromatin-Eu and Hetero chromatin, chemistry-chromosome-kinds-functions, nucleolus-structure-functions-mechanism of photosynthesis and generation of ATP.

Unit-IV

Cell cycle-mitosis and meiosis-interphase and division phase-Cell growth-normal and cancerous.

Unit-V

Microscopy-Types-Light-Electron and Phase contrast microscope structure and function.

References:

1.Albert,bray,D.Lewis,J.raff,M.Roberts.K and Watson,J.D-Molecular biology of the cell,Newyork,garland 1983

2.De Roberties E.D.P., F.A Saez and De Roberties E.M.F-cell biology, 1990.

3.K.V.Krishnamoorthy-methods in plant histochemistry, s.viswanathan publications 1988.

4.P.S.Verma and V.K.Agarwal.Text book of cytology.S.Chand&Co.,New delhi 1995.

5.P.S.verma and V.K.Agarwal.Text book of Cellbiology,Genetics,Evolution and Ecology.S.chand&Co., NewDelhi.

ANCILLARY BIOLOGY PRACTICAL - I

Programme : B.Sc.Microbiology Semester : IV Course code : 17UMBA4P Part:III-Allied-Lab Hours : 2 Credits: 1

Course outcomes:

CO1: To introduce about the basic structure of cell. CO2: To understand the mechanism of various cell regulation.

Botany

vegetative structure and reproductive structure in sargassum, yeast, funaria, seleginella and pinus (section cutting of sargassum and seleginella, pinus stem and needles)
structure of monocot flower-Alliumcepa
structure of Dicot flower-Tribulus terrestris

4. Study of mitosis by smear technique of Allium cepa root.

Zoology

1. Cockroach-external and digestive system, reproductive system and nervous system.

2. Frog-External, digestive system, urogenital system and brain (spotters oniy).

3. Morphology of the representative for each phylum spotters only- Amoeba, Euglena, paramecium,

Hydra, Planaria, Liverfluke, Tania, Ascaris, earthworm, Prawn, Pila, Starfish, Shark, Mugil, pigeon, rat.

4. Blood cells of man and blood vessels.

5. Demonstration of Histochemical staining methods.

6. Determination of blood groups & Rh factors.

7. Determination of haemoglobulin.

MEDICAL MICROBIOLOGY

Programme : B.Sc.Microbiology Semester: V Course code : 17UMBC51 Part:III-Core Hours : 4 Credits: 4

Course outcomes:

CO1: To create awareness about the infectious diseases. CO2: To familiarize the various methods of diagnosis and treatment.

Unit I

The History of Infectious Diseases: Human – microbe interactions – epidemiology of infectious diseases – mechanism of pathogenesis-Host-defense mechanisms.

Unit II

Diagnosis and control of microbial diseases – Collection and identification of pathogens from the specimen of Urine, sputum and throat swab. -Antimicrobial chemotherapy and susceptibility testing. Mechanism of action of β -lactams (penicillin & cephalosporin) - drugs affecting protein synthesis (Tetracycline and amino glycoside) and Sulfa drugs – Mode of action of antiviral and antifungal drugs.

Unit III

Bacterial diseases: Transmission, diagnosis, clinical symptoms and treatment for bacterial diseasesplague, tuberculosis, cholera, typhoid, and Staphylococcal diseases.

Unit IV

Viral diseases: Epidemiology, prophylaxis, clinical symptoms and treatment for human viral diseases. rabies, viral hepatitis, poliomyelitis, AIDS.

Unit V

Fungal and protozoan diseases: Cutaneous mycoses, systemic mycoses, opportunistic mycoses. Life cycle, diagnosis and treatment of following protozoan diseases – amoebiasis, malaria,

References

- 1. Jawetz, E. Melnic, JL, & Adelberg, EA. Medical microbiology 22/e McGraw Hill Companies, 2004.
- 2. Mims, C. Playfair, J Roitt, I, Wakelin, D. & Williams, R. Medical Microbiology, 3/e Mosby publications, 2004.
- 3. Prescott, Harley and Klein, Microbiology, 6/e The McGraw-Hill Companies, 2008.
- 4. Ananthanarayanan R. & Jayaram Panicker, C.K. Textbook of Microbiology, Orient Longman, 2005.

AGRICULTURE & ENVIRONMENTAL MICROBIOLOGY

Programme : B.Sc.Microbiology Semester : V Course code : 17UMBC52 Part:III-CORE Hours : 4 Credits: 4

Course outcomes:

CO1: To understand the role of microbes in agriculture and environment. CO2: To create awareness about biofertilizers and disease management.

Unit I

Soil microbes: Bacteria, Fungi and Actinomycetes (distribution) – Microbial interaction: mutualism, amensalism and commensalisms - Soil enzymes – Plant microbial interactions- N_2 fixation, symbiotic and free living- phosphate solubilization– Mycorrhizal association; ecto and endomycorrhizae.

Unit II

Plant microbe interactions - pathogenesis, mechanism of pathogen establishment and symptoms. Plant diseases caused by Bacteria, *Xanthomonas, Mycoplasma*, Fungi, *Pyricularia, Fusarium* and Viruses, TMV.

Unit III

Disease control- Fungicides, Pesticides, Biological control mechanisms - Production of bioinsecticides, bacterial.

Unit IV

Biofertilizers: production and methods of application – Rhizobium biofertilizer, BGA biofertilizer, Azolla- Anabaena biofertilizer - microbial herbicides – Biotechnology in Agriculture: Bt. cotton and herbicide tolerant plants. PGPR.

Unit V

Role of microorganisms in biogeochemical cycles (N, P and C cycles) – Biodegradation of xenobiotics (chlorinated pesticides) – MEOR - bioleaching of metals – microbes in waste treatment: solid waste (sanitary land fill and composting) and liquid waste – sewage treatment.

References

- 1. Rangasami G and Bagyaraj DJ. 1993. Agricultural Microbiology 2/e Prentice- Hall publications.
- 2. Ronald Atlas, Bartha, Richard, 1987. Microbial ecology 2/e Benjamin-Cummings publications.
- 3. Prescott, Harley and Klein, 2006. Microbiology. The McGraw Hill companies.
- 4. Madigan, M.T., Martinko, J.M. and Parker, J., 1997, Brock Biology of Microorganisms 8/e. Prentice-Hall Inc.

BIOINFORMATICS

Programme : B.Sc.Microbiology Semester : V Course code : 17UMBE51 Part:III-ELECTIVE-I Hours : 4 Credits: 4

Course outcomes:

CO1: To promote the basics of computer.

CO2: To understand the applications of computer in life science.

Unit I

Components of computers input/output devices, Storage devices, Graphic devices, Operations system- MS DOS & WINDOWS - Networks-HTTP, HTML, Internet.

Unit II

Use of commercial software: MS word, Windows, Power Point, MS Excel.

Unit III

Biological databases- DNA databases-NCBI, DDBJ and protein databases –PIR, SWISS PROT. Collection and downloading information from databases –SRS.

Unit IV

DNA sequencing methods-Maxum gilbert and sanger coulsan methods. Pattern, motifs and profiles.

Unit V

Sequence alignment –Pairwise and multiple sequence alignment, FASTA, BLAST and CLUSTAL. Phylogenetic analysis.

References

- 1. Christopher J Rawlings, Software Directory for molecular Biologists Stockton Press, Mac Millan Publishers, 1986.
- 2. A directory DBT, Data basis in life sciences and Biotechnology: Govt. of India, March 1995.
- 3. R.M.Kamp, T. Choli-Papadaopoulu B. Witman Liebold., Protein Structure Analysis Springer Lab Manual.
- 4. T.N. Bryant, JWT Wimpenny, Computer in microbiology- a practical approach. IRL, Press, 1989.
- 5. By Zar, Bio-Statistics Analyses. Second Edition. Prentice Hall International Englewood Cliffs, New Jersey.

MICROBIAL PHYSIOLOGY

Programme : B.Sc.Microbiology Semester : V Course code : 17UMBE52 Part:III-ELECTIVE-II Hours : 4 Credits: 4

Course Outcomes:

CO1: To create awareness among the students about Microbial Physiology.

CO2: To understand the importance of Microbial Metabolism and Bacterial life cycle.

Unit I

Generation of Energy – Entropy, generation of ATP – substrate level phosphorylation, oxidative phosphorylation, proton motif force.

Unit II

Photosynthesis and inorganic metabolism – Photosynthesis in bacteria. Assimilation of inorganic phosphorus, sulfur and nitrogen in bacteria – sulfate reduction pathway, ammonia assimilation pathway, nitrogenase and nitrogen fixation.

Unit III

Transport of sugars and metabolites – active, passive and facilitated transport systems, chemiosmosis, ion gradients. Secretion in bacteria – type of secretion systems.

Unit IV

Bacterial cell division and differentiation – Cell wall synthesis and cell division in Bacteria, life cycle of *Bacillus*, stages of endospore formation, germination and outgrowth-Growth curve .

Unit V

Morphology and life cycles *-Hyphobacterium* and *Caulobacter*. Gliding bacteria and gliding motility, life cycle of fruiting bacteria – Myxobacteria. Sporulation in fungi.

References

- 1. Prescott, Harley and Klein. 2006. Microbiology 6/e. The McGraw-Hill Companies.
- 2. Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. 1993. Microbiology. Tata McGraw Hill Publishing Co., Ltd., New Delhi.
- 3. Schlegel, H.G.1993. General Microbiology. Cambridge University Press, Cambridge.
- 4. Moat AG, Foster JW and Spector MP, Microbial Physiology, 4/e Wiley-Liss, 2002.

MAJOR PRACTICAL III

Programme : B.Sc.Microbiology Semester : V Course code : 17UMBC5P Part:III-CORE-Lab Hours : 8 Credits: 8

Course outcome

CO1: To skill the students towards clinical microbiological techniques.

CO2: To understand about the various testing of environmental samples.

Medical Microbiology

1. Antibiotic susceptibility test: disc diffusion method

2. Measurement of minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC)

3. Isolation and identification of *Staphylococcus*, *Streptococcus*.

4. Collection and processing of medical samples

Agriculture & Environmental Microbiology

- 1. Isolation and characterization of soil microbes
- 2. Serial dilution method for enumeration of soil bacteria
- 3. Identification of microbial pathogen in paddy and vegetable crops (field study).
- 4. Isolation of symbiotic nitrogen fixing bacteria from root nodules Rhizobium
- 5. Isolation of free-living nitrogen fixing bacteria from rhizosphere Azotobacter
- 6. Isolation of phosphate solubilizing bacteria Pseudomonas
- 7. Examination of mycorrhizae VAM
- 8. Potability testing of water (MPN test)

GENETICS AND BIOSTATISTICS

Programme : B.Sc.Microbiology Semester : V Course code : 17UMBA51 Part:III-Allied Hours : 4 Credits: 4

Course outcomes:

CO1: To introduce the importance of statistics in life science. CO2: To understand the basics of mendel genetics.

Unit-I

Mendelian Genetics-Mendel's works, experiments, observations and results-mendel'slaws-terms-Back cross,Test cross-complete and incomplete dominance-co dominance

Unit-II

Allelic interaction-Multiple Alleles-blood group inheritance-Rh factor-Multiple gene inheritance-genes and chromosomes-crossing over and linkage.

Unit-III

Biostatistics-Introduction-Data collection-Types of data –primary and secondary data-sampling and sampling designs-random and non random sampling.

Unit-IV

Representation of data-Diagrammatic-simple bar diagram, Pie diagram-graphical representation-Histogram, frequency curve, cumalative frequency curve-Measures of central tendency-Explanation-Types of average-Arithmetic mean-median-Mode-Continuous series-discrete series.

Unit –V

Measures of dispersion-Explanation-Types-range-Mean deviation-Standard deviation-Varience-correlation and regression.

References

1. Principles of Genetics-edmund. W. Sinnot, Dunn, L.C

2.Molecular Biology-David Frifielder.

3.An introduction to Biostatistics.2005.N.Gurumani

4. Statistics. Pillai. R.S. N and bhagavathi 2003

ANCILLARY BIOLOGY PRACTICAL -II

Programme : UG Semester : V Course code : 17UMBA5P Part : III Hours : 2 Credits: 2

Course outcome

CO1: To introduce about the basic of genetics.CO2: To understand about the testing of various environmental sample.

- 1. Survey of mendelian traits in man.
- 2. Law of probability.
- 3. Estimation of dissolved Oxygen in different water samples.
- 4. Estimation of salinity in different water samples.
- 5. Estimation of alkalinity in different water samples.
- 6. Soil testing for pH, alkalinity, nitrate and phosphates.
- 7. Problems in Measures of central tendencies-Mean, median and Mode.
- 8. Problems in Measures of dispersion-Standard deviation.

BIO CHEMICAL TECHNIQUES

Programme : B.Sc.Microbiology Semester : V Course code : 17UMBS51 Part:III-SBS-V Hours : 2 Credits: 2

Course outcomes:

CO1: To introduce the basic principles and applications of various techniques. CO2: To understand the working mechanisms of the instruments.

Unit-I

Chromatography-Column, Paper, TLC, gel filteration and Affinity.

Unit II

Advanced biochemical Techniques-GC, HPLC, Ion exchange and Dialysis.

Unit-III

Electrophoresis-Principle and application of electrophoresis-Agarose, SDS-PAGE.

Unit IV

Centrifugation-Principle and application-Types of centrifugation.

Unit-V

Principles and applications of PCR, Spectrophotometric-Simple and UV.

Reference.

1.Palanivelu.P,Analytical Biochemistry and separation Techniques,21st century publications, Palkalai nagar,Madurai.

2. Practical Biochemistry-Willson&Wilson.

ENVIRONMENTAL STUDIES

Programme : B.Sc.Microbiology Semester : V Course code : 17UEVS51 Part:IV Hours : 2 Credits: 2

Course Outcomes:

CO1: Demonstrate basic knowledge about environment and its allied problems CO2: Acquire skills to help individuals in identifying and solving problems CO3: Motivate public to participate in public environment

UNIT - I - EARTH AND ITS ENVIRONMENT

Earth – Formation and Evolution of Earth overtime – Structure of Earth and its components – Atmosphere, Lithosphere, Hydrosphere and Biosphere Resources – Renewable and Non-renewable resources

UNIT - II - ECOLOGY AND ECO - SYSTEM CONCEPTS

Ecology – Definition – Eco-system: Definition, Structure and Function – Energy flow- food chain and food web – one example for an eco system Bio-geo chemical cycles – Nitrogen, Carbon, Phosphorous and Water

UNIT – III – BIO-DIVERSTY OF INDIA

Introduction – Definition – Values of Bio-diversity – Threat to bio-diversity conservation of bio-diversity Bio-diversity of India – as a mega diversity nation – bio-geographical distribution hotspots of bio-diversity – national bio-diversity conservation board and its function

UNIT - IV - POLLUTION AND GLOBAL ISSUES

Definition, Causes, Effects and Control Measures of Air, Water, Soil, Marine, Noise, Thermal and Nuclear Pollution Global Issues – global warming and ozone layer depletion

UNIT - V - DEVELOPMENT AND DISASTER MANAGEMENT

Sustainable Development – Sustainable Agriculture – Organic Farming – Irrigation Water Harvesting and Waste recycling – cyber waste and management Disaster Management – Flood and Draught – Earthquake and tsunami – landslides and avalanche cyclones and hurricanes – precautions, warnings, rescue and rehabilitation.

BOOKS RECOMMENDED

Environmental Studies - Published by Madurai Kamaraj University, Madurai.

RECOMBINANT DNA TECHNOLOGY

Programme: B.Sc.MicrobiologySemester: VICourse code: 17UMBC61

Part:III-Core-VIII Hours : 6 Credits: 6

Course outcomes:

CO1: To understand about the basics of gene cloning.CO2: To promote the applications of gene cloning in various fields.

Unit I

General Strategies of cloning –Gene cloning enzymes Restriction enzymes and types,DNA ligase,Taq polymerase,Klenow,Terminal nucleotide transferase,Alkaline phosphatase,linkers and adopters.

Unit II

Vectors- Plasmids- constructed plasmids, pBR322, pUC18 - Lambda phage derived vectors, cosmids and their applications. BAC and YAC as vectors.

Unit III

Methods of gene transfer –Transformation, Transduction, Transfection, microprojectile bombardment, Southern, Northern and Western blotting techniques.

Unit IV

Transgenic animals, transgenic mice and sheep. - Agrobacterium mediated gene transfer mechanism - Markers and Reporter genes and their applications - Transgenic plants – insecticide resistance, herbicide and drought tolerance. Production of Insulin- Growth hormone (STH)- Interferons, etc.

Unit V

Intellectual property rights, patent, forms of patents, process of patenting, Indian and international agencies involved in patenting, patenting biological materials.

References

1. Brown, T.A., Genetics – A Molecular Approach, Chapman Hall, London, 2004.

- 2. Darnell, J. Lodish, H., and Baltimore, D., Molecular Cell Biology, Scientific American Books Inc., Iowa. 2006
- 3. Glick,B.R. and Pasternak, J.J.,2006, Molecular Biotechnology- Principles and Applications of Recombinant DNA technology, ASM press, Washington.

INDUSTRIAL & FOOD MICROBIOLOGY

Programme: B.Sc.MicrobiologySemester: VICourse code: 17UMBE61

Part:III-Elective-III Hours : 6 Credits: 6

Course outcomes:

CO1: To encourage and promote the students in the field of Industrial Microbiology. CO2: To promote the applications of microbes in various industries.

Unit I

Fermentor-Basic design, parts and function. Types of fermentor-Batch, CSTF,Tower fermentor and packed bed bioreactor.Computer applications in fermentation technology.

Unit II

Screening of industrially important microbes-Primary and screening techniques. Strain development, preservation-mineral oil and lyophilizationl. Inoculum preparation, Inoculum build-up.

Unit III

Ideal production medium-raw materials-Carbon sources-molasses, cheese whey, sulfate waste liquor, Lipid source-hydrocarbons and vegetable oils-Nitrogen sources-corn steep liquor, soya bean meal.

Unit IV

Fermentation-Types: aerobic fermentation(Penicillin,Vitamin B12), anaerobic (Ethanol) and solid state(Gibberellic acid). biological assays.

Unit V

Food preservation by removal of microorganisms, low temperature, high temperature, irradiation and chemical methods. Food borne infection, food borne intoxications.

References

- 1. Crueger, W. and A. Crueger (2000), Biotechnology, A Text book of Industrial Microbiology, Panima Publishers, New Delhi.
- 2. Nandari, H., (2005), Industrial Biotechnology, Dominant Publications and Distributors, New Delhi.
- 3. Stanbury, O.F., Whitakar, A., and Hall, S.J., (1997), Principles of Fermentation Technology, Aditya Books (P) Ltd., New Delhi
- 4. Patel, A.H , Industrial Microbiology, The Tata McGraw-Hill Companies, 2008.
- 5. Frazier, WC and Westhoff DC. 2003. Food Microbiology, 4th edition, McGrawHill, NewYork.

MEDICAL LAB TECHNOLOGY

Programme: B.Sc.MicrobiologySemester: VICourse code: 17UMBE62

Part:III-Elective-IV Hours : 6 Credits: 6

Course Outcomes:

CO1: To create awareness about the importance of Hematology CO2: To understand the importance of Clinical Biochemistry.

Unit I

Anticoagulants. Components of blood and their functions-erythrocytes, leukocytes, lymphocytes, monocytes, and thrombocytes. Preparation of blood collecting containers with anticoagulant.

Unit II

Blood collection by venipuncture, Blood collection by capillary puncture, Preparation of serum and plasma. RBC and WBC counts, Study of stained blood smear- differential count.

Unit III

Routine haematological tests- determination of haemoglobin concentration, Reticulocyte count-ESR- Eosinophils count- Platelet count. Maintanance of laboratory records.

Unit IV

Clinical Biochemistry- Routine biochemical tests-Blood sugar, urea, creatinine and cholesterol.

Unit V

Routine procedures in blood bank-ABO blood grouping and Rh typing-AHG test-compatibility testing or cross-matching.

Book Recommended:

Mukherjee, KL., 1988, Medical Laboratory Technology Volumes-I to III, Tata McGraw-Hill Publishing Company Limited, New Delhi.

MAJOR PRACTICAL III

Programme : B.Sc.Microbiology Semester : VI Course code : 17UMBC6P Part:III-Core-Lab Hours : 8 Credits: 8

Course outcomes:

CO1: To skill the students towards clinical microbiological techniques.

CO2: To understand about the various testing of environmental samples.

Medical Microbiology

1. Antibiotic susceptibility test: disc diffusion method

2. Measurement of minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC)

3. Isolation and identification of *Staphylococcus*, *Streptococcus*.

4. Collection and processing of medical samples

Agriculture & Environmental Microbiology

- 9. Isolation and characterization of soil microbes
- 10. Serial dilution method for enumeration of soil bacteria
- 11. Identification of microbial pathogen in paddy and vegetable crops (field study).
- 12. Isolation of symbiotic nitrogen fixing bacteria from root nodules Rhizobium
- 13. Isolation of free-living nitrogen fixing bacteria from rhizosphere Azotobacter
- 14. Isolation of phosphate solubilizing bacteria Pseudomonas
- 15. Examination of mycorrhizae VAM
- 16. Potability testing of water (MPN test)

MAJOR PRACTICAL IV

Programme : B.Sc.Microbiology Semester : VI Course code : 17UMBC6Q Part:III-Core-Lab Hours : 8 Credits: 8

Course outcomes:

CO1: To skill the students towards Advanced microbiological techniques. CO2: To motivate the students in the field of industry oriented career.

Recombinant DNA TECHNOLOGY

- 1. Isolation of chromosomal DNA from microbial cells.
- 2. Separation of DNA by agarose gel electrophoresis
- 3. Determination of purity and quantification of DNA
- 4. Isolation and purification of a plasmid DNA
- 5. Restriction Digestion Analysis
- 6. Ligation
- 7. Transformation of *E. coli* using plasmid (pUC18/19)
- 8. Blue-white Selection of transformants

Industrial Microbiology

- 1. Isolation of amylase and protease producing bacteria and fungi
- 2. Crowded plate technique for antibiotics producing microbes
- 3. Alcohol (ethanol) production
- 4. Immobilization of yeast

Food Microbiology

- 1. Enumeration of microbial population in food smples meat, pickles, icecream, fruit juices
- 2. Milk quality test-MBRT

ENVIRONMENTAL BIOLOGY

Programme : B.Sc.Microbiology Semester : VI Course code : 17UMBA61 Part:III-Allied Hours : 4 Credits: 4

Course outcomes:

CO1: To introduce the importance of Environment in life. CO2: To understand the basics of ecosystem.

Unit-I

Environmental biology and its relevance to human civilization- environmental factors-Physical, chemical and biological –and their influence in living system-population explosion and its consequences-Deforestation and its consequences.

Unit-II

Ecosystem and flow energy and nutrients-Concept of ecosystem, biosphere and types of ecosystembiotic and abiotic factors-primary and secondary productivity-food chain and foofd web-ecological pyramids-biogeo chemical cycles.

Unit-III

Resource and conservation-Natural resources-aquatic and terrsestrial resources-renewable and non renewable energy (introduction)-Aquatic resources-sewage treatment-fish culture and management-Terrestrial resources-Agriculture-soil fertility and nitrogen fixation-biofertilizers.

Unit-IV

Environmental pollution and management-Types of pollution-Air, Water, Soil and Noise-sources, effect and control measures-environmental pollution management and environmental education.

Unit-V

Population biology-Population parameters and their estimation-life table-reproductive effortevolution of demographic traits-population growth models-species interaction and competition-populationregulation-density dependent and independent.

References:

1.Dasmann, R., environmental Conservation-II Ed.

2.J.Kormondy, Concepts of Ecology-II Ed.

3.Odum, E.P. Fundamentals of Ecology-1980.

4.Ehrlich, P.R., J.P.Holdreh and R.W.Kolm, Man and Ecosphere, 1989.

5. Verma.P.S and V.K Agarwal., environmental Biology, S.Chand&Co., NewDelhi, 1995.

ANCILLARY BIOLOGY PRACTICAL

Programme : B.Sc.Microbiology Semester : VI Course code : 17UMBA6P Part:III-Allied Hours : 2 Credits: 1

Course outcomes:

CO1: To introduce about the basic of genetics. CO2: To understand about the testing of various environmental sample.

- 9. Survey of mendelian traits in man.
- 10. Law of probability.
- 11. Estimation of dissolved Oxygen in different water samples.
- 12. Estimation of salinity in different water samples.
- 13. Estimation of alkalinity in different water samples.
- 14. Soil testing for pH, alkalinity, nitrate and phosphates.
- 15. Problems in Measures of centrel tendencies-Mean, median and Mode.
- 16. Problems in Measures of dispersion-Standard deviation.

ENZYMOLOGY & ENZYME TECHNOLOGY

Programme : B.Sc.Microbiology Semester : VI Course code : 17UMBS61 Part:IV-SBS-VI Hours : 2 Credits: 2

Course outcomes:

CO1: To introduce about the Enzymes and co factors. CO2: To understand the application of enzymes in various fields.

Unit- I

Nomenclature and Classification of enzymes (with examples)-General properties of enzymes (Optimum pH, Optimum Temp & Substrate Concentration).

Unit II

Steady state kinetics and derivation of Michaelis-Menten, Linweaver-Burk, equations and their plots-Activation energy-Enzyme specificity

Unit- III

Extraction of enzymes-Purification of enzymes-Enzyme inhibitors.

Unit- IV

Mechanism of enzyme catalysis- Coenzymes-NAD, FAD- Metal ions in enzyme catalysis.

UnitV

Application of enzymes (Clinical & Industrial)-Immobilization of enzymes.

References

1.Palanivelu.P ,Enzymes, Ribozymes and DNAzymes.,21st century publications, Palkalai nagar,Madurai.

2.T.Palmer, Enzymes-Biochemistry, Biotechnology, Clinical chemistry-EastWest press, NewDelhi.

3.Conn,E.E.,Stumpf,P.K,Bruening,G and Doi,R.H,john Wiley & Sons.Outlines of Biochemistry.

VALUE EDUCATION

Programme : B.Sc.Microbiology : VI Course code : 17UVED61

Part:IV Hours : 2 Credits: 2 Semester

Course Outcomes:

CO1: Develop the overall personality including physical, mental, emotional and spiritual aspects

CO2: Demonstrate good manners and cooperative citizenship

CO3: Develop respect for the dignity of individual and society

UNIT – I – VALUES AND THE INDIVIDUAL

Values Meaning – The Significance of Values – Classification of Values – Need of Value Education - Values and the Individual : Self- Discipline, Self- Confidence, Self-Initiative, Empathy, Compassion, Forgiveness, Honesty and Courage.

UNIT - II - VALUES AND RELIGION

Karma Yoga in Hinduism – Love and Justice in Christianity – Brotherhood in Islam - Compassion in Buddhism - Ahimsa in Jainism - Courage in Sikhism - Need for **Religious Harmony**

UNIT - III - VALUES AND SOCIETY

Definition of Society - Democracy - Secularism - Socialism - Gender Justice -Human Rights – Socio- Political Awareness – Social Integration – Social Justice

UNIT – IV – PROFESSIONAL VALUES

Definition - Accountability - Willingness to Learn - Team Spirit - Competence Development – Honesty – Transparency – Respecting Others – Democratic Functioning – Integrity and Commitment

UNIT - V - ROLE OF SOCIAL INSTITUTIONS IN VALUE FORMATION

Role of Family - Peerhood - Society - Educational Institutions - Role Models, and Mass Media in Value Formation

BOOKS RECOMMENDED

Value Education, Published by Madurai Kamaraj University, Madurai.