

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Uthamapalayam, Theni District. Pin Code: 625 533.

DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE – CHEMISTRY

SYLLABUS

Choice Based Credit System – CBCS

(As per TANSCHE/MKU Guidelines)

with

Outcome Based Education (OBE)

(Academic Year 2020 - 2021 onwards)

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Uthamapalayam, Theni District. Pin Code: 625 533.

Name of the Programme: M.Sc. Chemistry

Choice Based Credit System (CBCS) (As per TANSCHE/MKU Guidelines)

with Outcome Based Education (OBE)

(with effect from the Academic Year 2020 – 2021)

College Vision and Mission

Vision

Our vision is to provide the best type of higher education to all, especially to students hailing from minority Muslim community, rural agricultural families and other deprived, under privileged sections of the society, inculcating the sense of social responsibility in them. Our college is committed to produce talented, duty-bound citizens to take up the challenges of the changing times.

Mission

Our mission is to impart and inculcate social values, spirit of service and religious tolerance as envisioned by our beloved Founder President Hajee Karutha Rowther.

The Vision beckons the Mission continues forever.

Programme Educational Objectives (PEO)

Our graduates will be progressive, efficient, value based, academically excellent, creative, collaborative, empowered and globally competent literates with the skills required for societal change.

They will demonstrate

	Comprehensive knowledge and expertise, employability, the acumen of
PEO1	creative and critical thinking, the spirit of enquiry and professional attitude
	required for a successful career
	Accountability, linguistic competence and communication skills in the work
F LOZ	environment and beyond
DEU3	Perseverance, effective collaboration, team spirit, leadership and problem
FLUJ	solving skills
	Keen sense of civility, professional ethics, receptivity and moral
FLU4	righteousness
DEOF	Commitment to address social and environmental threats and to act as
FE05	responsible service-minded, duty-bound global citizens

Department Vision and Mission

Vision

• Generate knowledgeable Chemists and scientists to enhance services to the society.

Mission

- Enable the students to excel in the subject, research and services.
- Elevate students to international standards.
- Encourage the students to take up competitive examinations.

Programme Outcomes (PO)

On the successful completion of M. Sc., Chemistry programme, the students will be able to

P01	Understand the essential parts of organic, inorganic and physical chemistry.					
PO2	Categorize and apply the concepts of medicinal, environmental, nano, industrial, polymer, supramolecular and Computer Chemistry in real life					
	situations.					
DOG	Utilize basic analytical and technical skills in the various fields of chemistry to					
P03	become as academically sound researchers and intellectuals.					
	Formulate novel research ideas in different areas of chemistry to solve various					
P04	challenges of the society.					
	Formulate novel research ideas in different areas of chemistry to solve various					
P05	challenges of the society.					

Program Specific Outcomes (PSO)

A graduate of M. Sc. Chemistry after two years will

DSU1	Outline the essential parts of advanced fields of chemistry and pursue
1301	higher studies.
	Perform as employers in private/government institutions rising up to top
F 302	positions by applying the learned concepts of chemical science.
	Utilize modern research and technological skills amongst the master
PSO3	students in order to become professionals and leaders in the various
	sectors of Chemical science.
	Recognize the importance of utilizing their research knowledge, skills and
F304	initiative for the benefit of society.
	Participate and succeed in various state, national and international level
PSO5	competitive examinations to get suitable employment in government and
	global research sectors.

Programme Scheme Eligibility

A candidate who has passed B.Sc., Chemistry as the major subject with physics as one ancillary. The other ancillary subject may be Mathematics or Botany or Zoology is eligible for the Master of Science – Chemistry Degree.

Duration of the Course: M.Sc., Chemistry – 2 years (4 Semesters). Medium of instruction: English.

For Programme Completion

A Candidate shall complete:

- Part III Core papers in semesters I, II, III and IV respectively
- Part III Elective papers in semesters I, II and IV respectively
- Part IV Non- Major Elective papers in semester III

Scheme of Examinations under Choice Based Credit System

Term End Examinations (TEE)	- 75 Marks
Continuous Internal Assessment Examinations (CIAE)	- 25 Marks
Total	- 100 Marks

Pattern of Continuous Internal Assessment Examinations (CIAE)

Average of Two Internal Tests (each 20 marks)	- 20 Marks
Seminar / Quiz / Assignment	- 05 Marks
Total	- 25 Marks

Pattern of Term End Examinations (Max. Marks: 75 / Time: 3 Hours) External Examinations Question Paper Pattern

Section – A (10 X 1 = 10 Marks) Answer ALL questions.

- Questions 1 10
- Two questions from each unit
- Multiple choice questions and each question carries Four choices

Section – B (5 X 7 = 35 Marks)

Answer ALL questions choosing either A or B.

- Questions 11 15
- Two questions from each unit (either.... or.... type)
- Descriptive Type

Section – C (3 X 10 = 30 Marks)

Answer any THREE out of five questions.

- Questions 16 20
- One question from each unit
- Descriptive Type

Passing Marks

Minimum 34 for External Exam Eligibility for the degree – passing minimum is **50%**

Practical Examination

Internal – 40 marks External – 60 marks Total – 100 marks Passing minimum is **40%**

Weightage

Waightaga for Plaam's Tayonomy	Dorcontago	Marks		
weightage for bloom's raxonomy	reitentage	CIAE	TEE	
Knowledge (Remembering) – K1	10	2	7	
Understanding – K2	10	3	8	
Applying – K3	20	5	15	
Analyzing – K4	20	5	15	
Evaluating – K5	40	10	30	
Gross Total	100	25	75	

Assessment

Distribution of questions and marks for Continuous Internal Assessment Examinations

Bloom's Taxonomy	Section A	Section B	Section C	Total
Knowledge(K1)	3 (3)	1 (a or b) (4)		
Understanding(K2)	3 (3)	1 (a or b) (4)		40 Marks
Apply(K3)	1 (1)	1 (a or b) (4)	1 (8)	
Analyzing (K4)	1 (1)	1 (a or b) (4)	1 (8)	
CIA Examinations con	40/2 = 20			
Evaluating (K5)	10/2 = 5			

Bloom's Taxonomy	Section A	Section B	Section C	Total
Knowledge(K1)	7 (7)			
Understanding(K2)	1 (1)	1 (a or b) (7)		
Apply(K3)	1 (1)	2 (a or b) (14)		Total 75 Marks
Analyzing (K4)	1 (1)	2 (a or b) (14)		
Evaluating (K5)			3 out of 5 (30)	

Note: Figures in parenthesis are Marks

Course	Course	Course Title	Hrs	CIAE TEE		Max.	Credits		
Category	Code					Marks			
	Semester – I								
	Part – III (OBE)								
Core – I	20PCHC11	Organic Chemistry- I	5	25	75	100	5		
Core – II	20PCHC12	Inorganic Chemistry- I	5	25	75	100	4		
Core – III	20PCHC13	Physical Chemistry – I	5	25	75	100	4		
Core – IV	20PCHC1P	Organic Chemistry Practical	10	40	60	100	5		
	20PCHE11	Medicinal and Pharmaceutical Chemistry							
Elective - I	20PCHE12	C-Programming: Fundamentals and Applications in Chemistry	5	25	75	100	5		
	30			500	23				
Semester – II									
	Part – III (OBE)								
Core – V	20PCHC21	Organic Chemistry- II	5	25	75	100	4		
Core – VI	20PCHC22	Inorganic Chemistry- II	5	25	75	100	5		
Core – VII	20PCHC23	Physical Chemistry – II	5	25	75	100	4		
Core – VIII	20PCHC2P	Physical Chemistry Practical	10	40	60	100	5		
	20PCHE21	Analytical Chemistry	_						
Elective - II	20PCHE22	Computer Applications in Chemistry	5	25	75	100	5		
		Total	30			500	23		

Details of Course Category, Code, Credits & Title

Course Category	Course Code	Course Title	Hrs	CIAE TEE		Max. Marks	Credits		
dutegory	coue	Semester – III	<u> </u>						
	Part – III (OBE)								
Core – IX	20PCHC31	Organic Chemistry- III	6	25	75	100	5		
Core – X	20PCHC32	Inorganic Chemistry - III	6	25	75	100	5		
Core – XI	20PCHC33	Physical Chemistry- III	5	25	75	100	5		
Core – XII	20РСНСЗР	Inorganic Chemistry Practical	10	40	60	100	5		
		Part – IV							
NME	20PCHN31	Applications in Chemistry	3	25	75	100	3		
Total 30 500 23							23		
Semester – IV									
	Part – III (OBE)								
Core – XIII	20PCHC41	Organic Chemistry- IV	5	25	75	100	4		
Core – XIV	20PCHC42	Inorganic Chemistry- IV	5	25	75	100	4		
Core – XV	20PCHC43	Physical Chemistry – IV	5	25	75	100	5		
Core – XVI	20PCHC4P	Project	10	40	75	100	4		
Elective III	20PCHE41	Polymer Chemistry	F	25	75	100	4		
Elective - III	20PCHE42	Conducting Polymers	5	23	75	100	4		
		Total	30			500	21		
		Grand Total	120			2000	90		

Course Code	Course Title	Category	Total Hours	Credits
20PCHC11	Organic Chemistry - I	Core -I	75	5

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented		Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	\checkmark

The course has been framed with an objective of instilling maximum knowledge on various chemical reaction mechanism viz. substitution, elimination and addition.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
C01	Understand the concept of chemical delocalization,	K1 K2 K3
COI	aromaticity and intermediates in the chemical reaction	M1, M2, M3
	Classify and explain the types of intermediates	V1 V2 V2
CO2	and methods of determining organic reaction	K1, K2, K3 V4 V5
	mechanism.	K4, K5
<u> </u>	Analyze the reaction mechanism in relation to	V1 V2 V2 VA
LUS	nucleophilic substitution reactions.	N1, N2, N3,N4
CO4	Determine the mechanism for elimination reactions.	K1, K2, K3,K4, K5
COF	Interpret and distinguish reaction mechanism of	
105	various addition reactions.	N1, N2, N3,N4, N3
1-Knor	wladga K2-Understand K2-Apply K4-Applyso	K5. Evaluato

K1-Knowledge K2-Understand K3-Apply K4- Analyse K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
CO1	3	1	2	3	3
CO2	3	1	1	3	3
CO3	3	1	3	3	3
CO4	2	3	2	2	3
C05	3	3	2	3	2
1-Low 2-Medium			•	3-Strong	

11 0							
	PSO1	PSO2	PSO3	PSO4	PSO5		
CO 1	3	3	2	2	3		
CO 2	3	3	2	2	3		
CO 3	3	3	3	1	3		
CO 4	3	3	3	1	3		
CO 5	3	3	3	1	2		
l-Low		2-Medium			3-Strong		

1-Low

Syllabus

Unit I

15 Hours

bonding, Delocalized chemical Aromaticity Reaction and Electron displacement - Steric effect - Tautomerismintermediate: Concept of aromaticity - Benzenoid and non-benzenoid compounds -Huckel's rule - Non aromatic and anti aromaticity - Alternant and nonalternant hydrocarbons - aromaticity of cyclopentadienyl anion and Tropylium cation – Azulenes and annulenes. Generation, structure, stability, reactivity and reactions of carbocations, carbanions, free radicals (reactions include Pinacol coupling, McMurray reactions, acyloin reaction, selective radical bromination). Carbenes: Stability - Structure - Generation - Types - Reactions. Nitrenes: Generation and reactions.

UNIT - II

Reaction mechanism-I: Guidelines for proposing reasonable mechanism -Energetics and energy profile diagrams - transition state - Intermediate -Hammond's postulate – principle of microscopic reversibility - kinetic and thermodynamic controls - kinetic and non-kinetic methods of determining organic reaction mechanism - primary and secondary kinetic isotope effects - Effect of structure on reactivity: Resonance and field effects -Quantitative treatments – Hammett and Taft equation.

UNIT - III

18 Hours

15 Hours

Reaction mechanism-II: Aliphatic Nucleophilic Substitution Reactions -Mechanism – S_N1 and S_N2 , - Effect of substrate structure, attacking nucleophile, leaving group and reaction medium on reactivity - S_{Ni} , S_{Ei} , Neighboring group participation by n, π and σ bonds – Reactivity at an allylic, aliphatic trigonal and vinylic carbon - Ambident nuleophiles. Aromatic Nucleophilic Substitution Reactions: Unimolecular, Bimolecular and Benzyne mechanism – Effect of substrate, leaving group and attacking nucleophile. Electrophilic substitution reactions: Aliphatic: Bimolecular mechanism S_E2 and S_E1. Aromatic: Arenium ion mechanism – Orientation and reactivity: Ortho and Para ratio, partial rate factor.

UNIT-IV

Reaction Mechanism III: E_1 , E_2 and E_1CB mechanism- Competition between substitution and elimination – orientation of double bonds (Bredt's rule and Hofmann and saytzeff rules) – Effect of substrate structure, attacking nucleophile, leaving group and nature of reaction medium on reactivity – Mechanism and orientation in pyrolytic eliminations - Cope and Chugaev reaction (cis-elimination)

UNIT-V

15 Hours

Reaction Mechanism IV: Electrophilic, Nucleophilic & free radical addition – Mechanism, Orientation and reactivity and reactions - addition to conjugated systems- addition to α , β -unsaturated carbonyl and nitrile systems- Michael addition – addition of Grignard reagents-Diels Alder reaction Enamine reaction - Mechanism of Reformatsky reaction- Darzen reaction- Mannich reaction - Wittig reaction - Stobbe and Dieckman condensation.

Text Books:

Jerry March., *Advanced Organic Chemistry, Reaction mechanism and structure*, John Wiley and sons, New York, 1992, 4th Edition.

R.O.C. Norman., *Principles of organic synthesis*, Nelson Thornes, Hong Kong 2001, 3rd Edition.

P.J. Garrat., *Aromaticity*, Mc Graw Hill, India, 1991.

F.A. Carey and R.J. Sundberg, *Advanced Organic Chemistry*, *Part A and B*, Plenum Press, 1990, 3rd Edition.

G.M. Badger., *Aromatic character and Aromaticity*, Cambridge, USA, 2001.

Reference Books:

Clayden, Greeves, Warren and Wothers., *Organic Chemistry*, Oxford Uni Press, UK, 2007.

E.S. Gould., *Mechanism and structure in Organic Chemistry*, Holtoo INC, 1960.
G. Solomon., *Organic Chemistry*, John Wiley and sons INC, 1992, 5th Edition.
R.K. Mackie and D.M. Smith, *Guide Book to Organic synthesis*, Longman, UK, 1993.

Peter Sykes, A Guidebook to *Mechanism in Organic Chemistry*, Longman, 2003, 6th Edition.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Topic	No. of	Content Delivery		
No.	Горіс	Lectures	Methods		
	UNIT – I				
	Electron displacement – Steric effect –				
1.1	Tautomerism- Concept of aromaticity –	3	Chalk & Talk		
	Benzenoid and non-benzenoid compounds –				
	Huckel's rule - Non aromatic and anti				
	aromaticity- Alternant and non-alternant				
1.2	hydrocarbons - aromaticity	3	E-Resources		
	of cyclopentadienyl anion and Tropylium				
	cation –				
	Azulenes and annulenes- Synthesis,				
1.3	structure, stability, reactivity and reactions	3	Chalk & Talk		
	of carbocations, carbanions				
	Synthesis, structure, stability, reactivity and				
	reactions of free radicals (reactions include				
1.4	Pinacol coupling, McMurray reactions,	3	E-Resources		
	acyloin reaction, selective radical				
	bromination).				
	Carbenes: Stability - Structure – Generation –				
1.5	Types –Reactions. Nitrenes: Generation and	Discussion			
	reactions.				
	UNIT – II				
	Guidelines for proposing reasonable				
2.1	mechanism -Energetics and energy profile	3	E-Resources		
	diagrams – transition state– Intermediate				
	Hammond's postulate – principle of				
2.2	microscopic reversibility - kinetic and	3	Chalk & Talk		
	thermodynamic controls				
23	Kinetic and non-kinetic methods of	3	F-Resources		
2.5	determining organic reaction mechanism	5	Littesources		
	Primary and secondary kinetic isotope				
2.4	effects – Effect of structure on reactivity:	3	Discussion		
	Resonance and field effects				
25	Quantitative treatments – Hammett and Taft	3	Chalk & Talk		
2.3	equation.	5			

	UNIT – III		
3.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	6	E-Resources
3.2	Neighboring group participation by n, π and σ bonds – Reactivity at an allylic, aliphatic trigonal and vinylic carbon – Ambident nuleophiles.	5	Chalk & Talk
3.3	AromaticNucleophilicSubstitutionReactions:Unimolecular, Bimolecular andBenzynemechanism – Effect of substrate,leaving group and attacking nucleophile.	3	Discussion
3.4	Electrophilic substitution reactions: Aliphatic: Bimolecular mechanism S_E2 and S_E1 .	2	E-Resources
3.5	Aromatic: Arenium ion mechanism – Orientation and reactivity: Ortho and Para ratio, partial rate factor.	2	E-Resources
	UNIT – IV		
4.1	Elimination reactionsE ₁ , E ₂ and E ₁ CB mechanism	3	Discussion
4.2	Competition between substitution and elimination – orientation of double bonds (Bredt's rule and Hofmann and saytzeff rules)	3	E-Resources
4.3	Effect of substrate structure, attacking nucleophile, leaving group and nature of reaction medium on reactivity.	3	Chalk & Talk
4.4	Mechanism and orientation in pyrolytic eliminations - Cope and Chugaev reaction (cis-elimination)	3	Chalk & Talk

	UNIT –V			
	Addition to carbon – carbon multiple bonds:			
5.1	Electrophilic, Nucleophilic & free radical	3	E-Resources	
	addition/			
5.2	Mechanism, Orientation and reactivity and	3	E-Resources	
	reactions - addition to conjugated systems.	5	1 Resources	
53	Addition to α , β -unsaturated carbonyl and	3	Discussion	
5.5	nitrile systems-Michael addition.	5	Discussion	
5 /	Addition of Grignard reagents-Diels Alder	2	Challe & Talle	
5.4	reaction Enamine reaction	3	CHAIK & TAIK	
	Mechanism of Reformatsky reaction- Darzen			
5.5	reaction- Mannich reaction - Wittig reaction	3	E-Resources	
	- Stobbe and Dieckman condensation			
	Total	75		

Course Designer

Mr. G. Arivalagan

Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC12	Inorganic Chemistry -I	Core -II	75	4

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented		Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	I

The course gives in-depth knowledge on electronic structure of atom, bonding and its applications, acid-base concepts and nuclear chemistry. .

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge
		Level
CO1	Comprehend the electronic structure of atom and	K1 K2
COI	periodic properties of elements.	ΝΙ, Ν 2
CO2	Explain and compare the concepts of chemical bonding.	K1, K2,K3,K4
CO3	Apply the concepts of VB, MO and VSEPR theory to	K1 K2 K2 KA K5
05	determine the structure of molecules.	\mathbf{K}
CO4	Illustrate acid-base concepts, its measures and to	
604	evaluate various effects on acid base strength.	K1, K2,K3,K4,K3
	Experiment with different types of nuclear reactions,	
C05	nuclear reactors and to list various nuclear waste	K1, K2,K3
	disposal and safety measures.	
X1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

K1-Knowledge

K5- Evaluate

Mapping of CO with PO

	P01	P02	PO3	P04	PO5
C01	3	1	1	3	3
CO2	3	1	3	3	3
CO3	2	1	3	2	3
CO4	3	1	3	2	2
CO5	3	3	2	3	2
1-Low 2-M			dium	•	3-Strong

11 0							
	PSO1	PSO2	PSO3	PSO4	PSO5		
C01	3	3	2	1	3		
CO2	3	1	2	1	3		
CO3	3	1	2	1	3		
CO4	3	1	2	3	3		
CO5	3	3	3	3	3		
l-Low	v 2-Medium				3-Strong		

1-Low

Syllabus

UNIT – I

15 Hours

Electronic structure of atom: Modern views on atomic structure: Wave mechanical description of electron and orbitals, radial density functions and orbital energies, angular functions and orbital shapes-term symbol. Modern periodic table: Periodic properties-Ionisation potential, Ionic radii and covalent radii, Electron affinity, Electronegativity and their trend in the periodic table- Comparison of transition metals of 3d, 4d and 5d series

UNIT II

15 Hours Nature of the chemical bond: Ionic bond - Lattice energy and its determination by Born-Haber cycle and Born-Lande Equation – Hardness, electrical conductivity and solubility of ionic compounds - ionic radii. Goldschmidths radius ratio - packing of atoms and ions in solids. Calculation of ionic radius -Pauling's method and Linde's method. Effective nuclear charge - Slater's rule. Covalent bond - qualitative treatment of valence bond theory - Heitler - London theory - Pauling theory and Molecular orbital theory LCAO theory – Hybridisation and resonance.

UNIT III

15 Hours

Bonding application: Application of VB and MO theories to the structure of homonuclear (H₂, B₂, C₂, N₂ andO₂) and heteronuclear (CO, NO, HCl, HF) diatomic and selective polyatomic molecules (CO_3^{2-} , NO_2 , BeH_2 , CO_2) comparison of VB and MO theories. Bond properties, bond order, bond energy, bond length and bond polarity. Partial ionic character of covalent bonds - Fajan's Rule - Effects of polarization. VSEPR theory and its applications to H₂O, NH₃, ICl²⁻, IF₅, IF₇, ClO⁴⁻ ions. VSEPR applied to Xenon compounds like Xenon halides and xenon oxides.

UNIT IV

Acid-base systems and non-aqueous solvents: A generalized acid base concepts – steric effects and solvation effects – Measures of Acid Base strength –Factors affecting the strength of acids and bases- Common ion effect and Henderson's equation- Hard and Soft acids and bases – symbiosis – theoretical basis of hardness and softness. Classification of solvents – properties of ionizing solvents. Typical reactions in non-aqueous solvents-liquid HF, liquid SO₂, liquid NH₃, and sulphuric acid.

UNIT V

15 Hours

Nuclear chemistry: Radioactive decay and equilibrium- Different types of nuclear reaction – spallation – fission and fusion. Theories of fission. Fissile and Fertile isotopes. Nuclear fusion – stellar energy-Nuclear forces: Liquid drop model, shell model-Calculation of Q-values – Cross section. Detectors: Scintillation counter, Gas Ionisation chamber. Proportional Counter, Cerenkov Counter-Accelerators: Cyclotron, Synchrocyclotron, Betatron. Radio isotopes and their Applications: Activation analysis, Isotopic dilution technique-radiometric titration. Nuclear reactors: Types (Thermo nuclear and breeder reactors) feed materials production. Reprocessing of nuclear materials waste disposal. Atomic power projects in India. Hazardous of radioactive materials and Safety measures.

Text Books

Clyde Day, M. Jr & Joel Selbin, *Theoretical Inorganic Chemistry*, Chapman & Hall Ltd., London, 1967, 5th Reprint.

Chandra, A. K. *Introductory Quantum Chemistry*, Tata McGraw Hill, New Delhi, 1988,3rd Edition.

Lee, J. D. Concise *Inorganic Chemistry*, Blackwell Science Ltd., London. 2002, V Edition.

Durrant P. J. and Durrant. B, *Introduction to advanced inorganic chemistry*, Longman Group Ltd, 1970, London.

Glasstone, S. *Source Book of Atomic Energy*, Van Nostrand, East West Press (P) Ltd., New Delhi.1967, 3rd Edition.

Friedlander, G. Kennedy J.S and Millodr, M. M. *Nuclear and radiochemistry*, John Wiley & Sons, New York.1984.

Reference Books

Huheey, J. E. Ellen A. Keiter, Richard L. Keiter, *Inorganic Chemistry*, Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2004, IV Edn.

Madan R. D. Modern *Inorganic Chemistry*, S. Chand & Company Ltd., New Delhi, 2004.

Wahid U. Malik, G. D. Tuli and R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand & Co. Ltd., New Delhi, 2006.

Gary L. Miessler and Donald A. Tarr, *Inorganic Chemistry*, Pearson Education, Inc., New Delhi, 2004,3rd Edn.

William W. Porterfield, *Inorganic Chemistry*, Elsevier, New Delhi, 2005, II Edn.

Sharpe, A.G. *Inorganic Chemistry*, Addition – Wesley Longman, UK, 2004, III Edn. Shriver D. F. and Atkins, P.W. *Inorganic Chemistry*, Oxford University Press, London, 1999.

Arnikar, H. J. Essentials of *Nuclear Chemistry*, New Age international (P) Ltd., New Delhi. 2005, IV Edn.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonia	No. of	Content Delivery
No.	Горіс	Lectures	Methods
	UNIT – I		
1.1	Modern views on atomic structure: Wave mechanical description of electron.	3	Chalk & Talk
1.2	Radial density functions- Orbitals, and orbital energies- Angular functions and orbital shapes - Radii of atoms and ions.	5	E-Resources
1.3	Modern periodic table: Periodic properties- Ionisation potential, Ionic radii and covalent radii.	4	Chalk & Talk
1.4	Electron affinity. Electro negativity- their trend in the periodic table.	3	E-Resources
	UNIT – II		
2.1	Ionic bond – Lattice energy and its determination by Born-Haber cycle and Born-Lande Equation.	3	E-Resources
2.2	Hardness, electrical conductivity and solubility of ionic compounds – ionic radii.	2	Chalk & Talk

2.3	Goldschmidths radius ratio- packing of atoms and ions in solids. Calculation of ionic radius –Pauling's method and Linde's method. Effective nuclear charge Slater's rule.	4	E-Resources
2.4	Covalent bond – qualitative treatment of valence bond theory – Heitler-London theory.	3	Discussion
2.5	Pauling theory and Molecular orbital theory LCAO theory – Hybridisation and resonance.	3	Chalk & Talk
	UNIT – III		
3.1	Application of VB and MO theories to the structure of homonuclear (H ₂ , B ₂ , C ₂ , N ₂).	3	E-Resources
3.2	Heteronuclear (CO, NO, HCl, HF) diatomic and selective polyatomic molecules (CO_3^{2-} , NO ₂ , BeH ₂ , CO ₂).	3	Chalk & Talk
3.3	comparison of VB and MO theories- Bond properties, bond order, bond energy, bond length and bond polarity.	3	Discussion
3.4	Partial ionic character of covalent bonds- Fajan's Rule- VSEPR theory and its applications to H ₂ O, NH ₃ , IF ₅ , IF ₇ , ClO ⁴⁻ ions.	3	E-Resources
3.5	VSEPR applied to Xenon compounds like Xenon halides and xenon oxides.	3	E-Resources
	UNIT – IV		
4.1	A generalized acid base concepts- Steric effects and solvation effects.	3	Discussion
4.2	Measures of Acid-Base strength –Factors affecting the strength of acids and bases.	4	E-Resources
4.3	Common ion effect and Henderson's equation- Hard and Soft acids and bases – symbiosis -theoretical basis of hardness and softness.	4	Chalk & Talk
4.4	Classification of solvents – properties of ionizing solvents. Typical reactions in non– aqueous solvents liquid HF, Hydrogen cyanide. Sulphuric acid and acetic acid.	4	Chalk & Talk

	UNIT –V		
5.1	Radioactive decay and equilibrium- Different types of nuclear reaction – spallation – fission and fusion- Theories of fission. Fissile and Fertile isotopes - Radio isotopes and their applications	4	E-Resources
5.2	Nuclear fusion – stellar energy- Nuclear forces: Liquid drop model, shell model - Detectors: Scintillation counter, Gas Ionisation chamber.	3	E-Resources
5.3	Proportional Counter, Cerenkov Counter Accelerators: Cyclotron, Synchrocyclotron, Betatron.	2	Discussion
5.4	Calculation of Q-values – Cross section - Applications: Activation analysis, Isotopic dilution technique-radiometric titration	2	Chalk & Talk
5.5	Nuclear reactors: Types (Thermo nuclear and breeder reactors) feed materials production. Reprocessing of nuclear materials waste disposal-Atomic power projects in India. Hazardous of radioactive materials and Safety measures.	4	E-Resources
	Total	75	

Course Designer Ms. A. Nihath Nazleen

Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC13	Physical Chemistry-I	Core -III	75	4

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented		Regional	
Employability Oriented		National	l
Entrepreneurship Oriented		Global	

The course enables the students to gain knowledge on properties of gases, Thermodynamic equilibrium and bio-physicochemical behavior of molecules.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Explain the properties of gases, liquid crystals, theory of thermodynamic equilibrium and non- equilibrium.	K1,K2
CO2	Compare the thermodynamic equilibrium and non-equilibrium studies.	K1,K2,K3,K4
CO3	Apply the concepts and fundamentals of quantum chemistry.	K1,K2,K3
CO4	Evaluate the quantum chemistry concepts and their applications.	K1,K2,K3,K4,K5
CO5	Develop their knowledge in application of SWE to many electron systems	K1,K2,K3
K1-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	1	1	1	3
CO2	3	1	1	2	3
CO3	2	1	1	1	3
CO4	2	1	1	3	3
C05	2	1	1	3	3
		0.14	1.		0.0

1-Low

3-Strong

	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	3	1	2	2	3
CO3	3	2	1	1	2
CO4	3	2	2	1	2
CO5	3	3	3	1	3
l-Low		2-Me	dium		3-Strong

1-Low

Syllabus

UNIT I

15 Hours

Properties of gases and liquid crystal: Equations of states - molecular speeds - Maxwell distribution of molecular velocities - one, two and three dimensions; Energy distribution-Maxwell - Boltzmann distribution law Rotation, vibrations and translational degree of freedom- principle of equipartition of energy and heat capacity; Molecular collisions- collision diameter, cross-section, number, frequency, mean free path (definition only); Transport phenomena in gases - Viscosity of gases - viscosity in terms of momentum transfer, thermal conductivity, and diffusion. Liquid crystals- Nematic (p-methoxycinnamic acid), cholesteric (cholestryl benzoate), smectic (ethyl-p-azoxybenzoate)- Theory and its application in liquid crystals display.

UNIT II

Thermodynamics - equilibrium and non-equilibrium: A general review of enthalpy, entropy and free energy concepts: Nernst heat theorem Genesis of third law and its limitations - derivation of third law and their application to real gases- calculation of $(\delta H/dP)T$, $(\delta E/dV)T$ and μj . T for gases - Thermodynamics of open systems - partial molar propertiesinternal energy, molar enthalpy, molar entropy, molar volume, free energy (chemical potential) – determination of partial molar properties; Chemical potential- relationship between partial molal quantities - Gibbs - Duhem equation- Duhem Margules equation; thermodynamic properties of real gases- Fugacity concept- Determination of Fugacity of real gases.

UNIT III

15 Hours

15 Hours

Quantum chemistry-I: Black Body radiation- Heisenberg's uncertainty principle - de Broglie wave particle duality-Experimental verification of matter waves- Compton effect - The Schrodinger equation and the postulates of quantum mechanics - operators -linear and non-linear operators- commutative and non -commutative operators - Hermitian operators- Eigen function, Eigen values and degeneracy.

UNIT IV

Quantum chemistry-II: Application of quantum mechanics to simple system-Application of SWE to free particle moving in one dimension-particle moving in a one dimension box - particle moving in 3D cubical and rectangular box- Quantum Mechanical tunneling - particle in a ring- rigid rotor- Simple Harmonic oscillator - hydrogen atom- angular momentum spin momentum ladder operator.

UNIT V

15 Hours

Approximation methods, application of SWE to many electron systems: Necessity for approximation methods - Variation methods for the Hydrogen atom – Perturbation (first order) method to Helium atom - Slater determinant wave function secular determinant – Hartree – Fock self consistent field method to Helium atom – HMO bielectron theory of Ethylene and Butadiene.

Text Books

Glasstone S. A., *Text book of Physical Chemistry*, McMillan India Ltd., 1999. Alberty R. A. and Daniels F., *Physical Chemistry*, John Wiley & Sons, New York, 1978.

Castellan G. W., *Physical chemistry*, , Wesley Publishing Company, UK,1986,3rd edition.

Glasstone S., *Thermodynamics for Chemists*, Eastern Wiley publications, 2002. Atkins P, *Physical Chemistry*, Oxford University Press, UK, 2002. 7th Edition. Atkins P. W., *Molecular Quantum Mechanics*, Oxford University Press, UK, 1986, 2nd Edition.

Hanna H. W., *Quantum Mechanics in Chemistry*, Benjamin- Cummiza London Publishing Company, UK, 1983.

Chandra A.K., *Introductory quantum chemistry*, Tata McGrow - Hill Publishing Co Ltd., New Delhi, India. 1988, 3rd edition.

Prasad R.K., *Quantum Chemistry*, 2004, 4th revised edition.

Reference Books

Glasstone S., *A text book of Physical Chemistry*, McMillan India Ltd., Alasca, 1999.

Walter J. Moore, *Physical Chemistry*, Orient Longman, New York, 2006, 6^{th} edition.

Klotz. M., Rosenberg, R. M., *Chemical thermodynamics*, Benjamin, New York, 1996, 4th edition.

Glasstone, S., *Thermodynamics for Chemists*, Eastern Wiley publications 2002, 5th edition.

Rajaram J., Kuriakose J. C., *Thermodynamics*, S. N. Chand, New Delhi,1999, 3rd edition.

Levine, *Quantum Chemistry*, Prentice-Hall, New Delhi, 2006, 6th edition.

Mcquarrie D. A., *Quantum Chemistry*, Viva Books Pvt. Ltd., New Delhi, 2003.

Levine, *Quantum Chemistry*, Prentice-Hall, UK, 2003, 5th edition.

Raymond Chang, *Physical Chemistry with application to biochemical system*, Mc Millan Publishing Company. Inc., New Delhi. 2002.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Torris	No. of	Content Delivery
No.	Горіс	Lectures	Methods
	UNIT – I		
	Equations of states - molecular speeds-		
1.1	Maxwell distribution of molecular velocities -	3	Chalk & Talk
	one, two and three dimensions.		
	Energy distribution-Maxwell – Boltzmann		
12	distribution law- Rotation, vibrations and	2	F-Resources
1.2	translational degree of freedom- principle of	5	E-Resources
	equipartition of energy and heat capacity.		
	Molecular collisions- collision diameter,		
1.3	cross-section, number, frequency, mean free	3	Chalk & Talk
	path (definition only).		
	Transport phenomena in gases - Viscosity of		
1.4	gases – viscosity in terms of momentum	3	E-Resources
	transfer, thermal conductivity, and diffusion.		
	Liquid crystals- Nematic (p methoxycinnamic		
	acid), cholesteric (cholestryl benzoate),		
1.5	smectic (ethyl-p -azoxybenzoate)-Liquid	3	Discussion
	crystals theory and its application in liquid		
	crystals display.		
	UNIT – II		
	A general review of enthalpy, entropy and		
2.1	free energy concepts: Nernst heat theorem-	3	E-Resources
	Genesis of third law and its limitations.		

2.2	Derivation of third law and their application to real gases- calculation of $(\delta H/dP)T$, $(\delta E/dV)T$ and μ j.T for gases.	3	Chalk & Talk
2.3	Thermodynamics of open systems - partial molar properties- internal energy, molar enthalpy, molar entropy, molar volume, free energy (chemical potential).	3	E-Resources
2.4	Determination of partial molar properties; Chemical potential- relationship between partial molal quantities - Gibbs - Duhem equation- Duhem Margules equation.	3	Discussion
2.5	Thermodynamic properties of real gases- Fugacity concept- Determination of Fugacity of real gases.	3	Chalk & Talk
	UNIT – III		
3.1	Black Body radiation- de Broglie wave particle duality- Heisenberg's uncertainty principle.	3	E-Resources
3.2	Experimental verification of matter waves- Compton effect - The Schrodinger equation and the postulates of quantum mechanics.	3	Chalk & Talk
3.3	Operators –linear and non-linear operators commutative and non-commutative operators Hermitian operators.	4	Discussion
3.4	Eigen function, Eigen values and degeneracy; Orthogonality and Normalization of wave functions.	3	E-Resources
3.5	Derivation of Schrodingers wave equation.	2	E-Resources
	UNIT – IV		
4.1	Application of quantum mechanics to simple system.	3	Discussion
4.2	Application of Schrodinger wave equation (SWE) to free particle moving in one dimension	3	Chalk & Talk
4.3	Particle moving in a one dimension box- Particle moving in 3D cubical and rectangle.	3	Discussion
4.4	Quantum Mechanical tunneling - particle in a ring rigid rotor- Simple Harmonic oscillator	3	E-Resources
4.5	Hydrogen atom- angular momentum spin momentum ladder operator	3	Chalk & Talk

	UNIT –V		
5.1	Necessity for approximation methods – Variation methods for the Hydrogen atom	4	E-Resources
5.2	Perturbation (first order) method to Helium atom	2	E-Resources
5.3	Slater determinant wave function- secular determinant	4	Discussion
5.4	Hartree – Fock self consistent field method to Helium atom	2	Chalk & Talk
5.5	HMO bielectron theory of Ethylene and Butadiene.	3	E-Resources
	Total	75	

Course Designer Ms. A. Mumthaj

Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC1P	Organic Chemistry Practical	Core -IV	150	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented	\checkmark	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	✓

This lab course enhances the laboratory skill of analyzing the functional groups present in a mixture of organic compounds qualitatively, preparing organic compounds, estimation of simple organic compounds.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	CO1	K1,K2,K3	
	CO2	Separate the organic mixture by chemical methods.	K1,K2,K3,K4
	CO3	Estimate the amount of glucose and amino acid viz., glycine and formaldehyde	K1,K2,K3
CO4 Interpret the iodometric method to estimate Ketonic compound.			K1,K2,K3,K4,K5
	CO5	K1,K2,K3,K4,K5	
K	1-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	PO5
C01	3	1	3	3	2
CO2	3	1	3	3	2
CO3	3	1	3	2	2
CO4	3	1	2	2	2
C05	3	2	3	3	1
1-Low		2-Me	dium		3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	3	3	2	1	2
CO3	3	3	3	3	3
CO4	3	3	2	1	2
C05	3	3	3	3	2

1-Low

2-Medium

3-Strong

Syllabus

I. Qualitative analysis:

Separation and analysis of two component mixtures. Identification of the components and preparation of solid derivative.

II. Quantitative analysis:

- a. Estimation of glucose by lane and Eynon method and Bertrand method
- b. Estimation of glycine
- c. Estimation of formalin
- d. Estimation of methyl ketone

III. Organic preparations:

(Only for class work) About 3 (five) two-stage preparation:

- a. P-Nitro aniline from acetanilide benzophenone
- b. P-Bromo aniline from acetanilide Aniline
- c. m-Nitro benzoic acid from methyl benzoate.

Text Books

Dr. N. S. Gnanpragasam, *Organic Chemistry: Lab Manual*, Viswanathan, S., Printers & Publishers Pvt Ltd, 2009.

Reference Books

Brian S. Furniss, *Vogel's Textbook of Practical Organic Chemistry,* Pearson India, 2003, 5th edition.

Course Designer

Mr. G. Arivalagan Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHE11	Medicinal and Pharmaceutical Chemistry	Elective -I	75	5

Nature of Course	
Knowledge Oriented	\checkmark
Skill Oriented	
Employability Oriented	
Entrepreneurship Oriented	

Course Relevance		
Local		
Regional	✓	
National		
Global	\checkmark	

Construe the drugs and their interactions with various organs of humans, synthesis of new drugs and their biological activities, therapeutic uses of steroids, alkaloids and antibiotics.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
C01	Tell the fundamentals of medicinal chemistry, QSAR, bio-isoterism, receptor and enzyme inhibitors as drugs.	K1,K2
CO2	Discover and evaluate Medicinally useful antibiotics and steroids	K1,K2,K3,K4,K5
CO3	Classify the drugs such as Antineoplastic Agents, Anti-tubercular drugs, Antimalarial drugs and Diuretics.	K1,K2,K3,K4
CO4	Plan the synthesis drugs such as Antihypertensive drugs and Antihistamines.	K1,K2,K3
CO5	Justify the basic concepts of Anti-inflammatory drugs, CNS stimulant drugs and CNS depresents drugs.	K1,K2,K3,K4,K5

K1-Knowledge K2-Understand K3-Apply K4- Analyse K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	PO5
C01	1	3	1	3	1
CO2	1	3	1	3	2
CO3	1	3	2	2	2
CO4	1	3	2	2	1
C05	1	3	1	2	2

3-Strong

	PS01	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	3
CO2	3	1	1	3	2
CO3	2	2	1	3	2
CO4	3	2	3	3	2
CO5	2	3	1	3	2
1-Low		2-Me	dium		3-Strong

1-Low

Syllabus

UNIT I

Fundamentals of Medicinal Chemistry: Definitions of Medicinal Chemistry, Pharmacology and Molecular Pharmacology - Major process involved in drug action - Pharmacokinetics phase – Quantitative Structure Activity Relationship (QSAR) - Hansch approach – Concept of bio-isoterism – Receptors and classification of membrane bound receptors - Enzyme inhibitors as drugs (illustrated with one example).

UNIT II

Medicinally useful antibiotics and steroids: Structural features and mode of action of the following antibiotics –penicillin G, Cephalosporin and their semi synthetic analogs (β -lactum), Streptomycin (Aminogylcoside), Terramycin (Tetracyclin), Erythorymycin (Macrolide) and Chloramphenicol. Steroids; Oral contraceptives, anabolic steroids, anti - inflammatory steroids.

UNIT III

Chemotheraopeutic *Agents*: *Antineoplastic Agents*: Classification, synthesis e.g., Cyclophosphamide, Ifofamide, Chlorambucil, Busulfan, Decarbazine, Methotrexate, 6-Mercaptopurine. *Anti-tubercular drugs*: Classification, synthesis, e.g., Isoniazid, Pyrazinamine, Ethambutol, Thiacetoazone and Ethionamide. *Antimalarial drugs*: Classification, synthesis, e.g., Chloroquine, Primaguine, Amaodiaquine, Proguanil and Pyrimethamine. *Diuretics*: Classification, Synthesis, e.g., Furesemide, Acetazolamide, Chlorothiazide

UNIT IV

Synthesis and Therapeutic action and SAR of certain drugs: *Antihypertensive drugs:* Nifedipine, Captopril, Hydralazine, Sodium nitroprusside and Clonidine. *Antihistamines*: H1-Antagonists: Pheniramine, Chlorpheniramine, Diphenylhydramine, Mepyramine, Promethazine, H₂-Antogonist: Cimetidine, Ranitidine and Fomotidine.

15 Hours

15 Hours

15 Hours

15 Hours

Anti-inflammatory drugs: Antipyretics & Non-narcotic analgesics; Aspirin, sodium salicylate, Paracetamol, phenylbuttazone, Oxypheylbutazone, Ibuprofen, Mefenamic acid and Dichlofenac sodium.

CNS stimulant Drugs: Amphetamine, Caffeine, Theobromine, Theophylline, Bemegride, Nikethamide and MethyPhenidate.

CNS depresent Drugs: Phenelazine, Isocarboxazide, Imipramine, Nortiptyline, Amitriptyline and Desipramine.

Text Books

G.L. Patrick, *An introduction to Medicinal chemistry*, Oxford University Press, 2001,2nd Edn.

Ashutoshkar, *Medicinal Chemistry*, New Age International Pvt. Ltd., 2010, 5th edition.

G.R. Chatwal, *Medicinal Chemistry*, Himalaya Publishing House, 2010,2nd edition. J. Dharuman, *Pharmaceutical Organic Chemistry*, AITBS Publishers, 2007,1st edition.

Reference Books

T. Nagradi, *Medicinal Chemistry* – A Biochemical Approach, Oxford University, 2004.

J. B. Taylor and P.D. Kennewall, *Introductory Medicinal Chemistry*, Ellisworth Publishers, 1985.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module No.	Торіс	No. of Lectures	Content Delivery Methods
	UNIT – I		
1.1	DefinitionsofMedicinalChemistry,Pharmacology and Molecular Pharmacology.	3	Chalk & Talk
1.2	Major process involved in drug action - Pharmacokinetics phase.	3	E-Resources
1.3	Quantitative structure Activity relationship (QSAR)	3	Chalk & Talk
1.4	Hansch approach – Concept of bio-isoterism.	3	E-Resources
1.5	Receptors and classification of membrane bound receptors-enzyme inhibitors as drugs.	3	Discussion
	UNIT – II		
2.1	Structural features and mode of action of the following antibiotics: penicillin G, Cephalosporin and their semi synthetic analogs (β -lactum).	6	E-Resources
2.2	Streptomycin (aminogylcoside), Terramycin (tetracyclin).	3	Chalk & Talk
2.3	Erythorymycin(macrolide)andChloramphenicol.	2	E-Resources
2.4	Steroids; Oral contraceptives, anabolic steroids.	2	Discussion
2.5	Anti -inflammatory steroids.	2	Chalk & Talk
	UNIT – III		
3.1	Antineoplastic agents: Classification and synthesis of Cyclophosphamide, Ifofamide, Chlorambucil,	3	E-Resources
3.2	Classification and synthesis of Busulfan, Decarbazine, Methotrexate, 6 Mercaptopurine.	3	Chalk & Talk
3.3	Anti-tubercular drugs: Classification, synthesis of Isoniazid, Pyrazinamine, Ethambutol, Thiacetoazone and Ethionamide.	3	Discussion
3.4	Antimalarial drugs: Classification, synthesis of Chloroquine, Primaguine, Amaodiaquine, Proguanil and Pyrimethamine.	3	E-Resources
3.5	Diuretics: Classification, Synthesis of Furesemide, Acetazolamide, Chlorothiazide.	3	Discussion

	UNIT – IV					
4 1	Antihypertensive drugs: Nifedipine, Captopril,	3	Discussion			
7.1	Hydralazine.	5	Discussion			
4.2	Sodium nitroprusside and Clonidine.	3	Chalk & Talk			
43	Antihistamines: H1-Antagonists: Pheniramine,	3	Discussion			
7.5	Chlorpheniramine.	5	Discussion			
ΔΔ	Diphenylhydramine, Mepyramine,	3	F-Resources			
т.т	Promethazine, H2-Antogonist.	5	L-Resources			
4.5	Cimetidine, Ranitidine and Fomotidine.	3	E-Resources			
	UNIT –V					
	Anti-inflammatory drugs: Antipyretics & Non-					
5.1	narcotic analgesics; Aspirin, sodium salicylate,	4	E-Resources			
	Paracetamol.					
	phenylbuttazone, Oxypheylbutazone,					
5.2	Ibuprofen, Mefenamic acid, Dichlofenac	3	Chalk & Talk			
	sodium.					
53	CNS stimulant Drugs: Amphetamine, Caffeine,	3	Discussion			
0.0	Theobromine, Theophylline.	5	Discussion			
5.4	Bemegride, Nikethamide, MethyPhenidate.	2	Chalk & Talk			
	CNS depresent Drugs: Phenelazine,					
5.5	Isocarboxazide, Imipramine, Nortiptyline,	3	E-Resources			
	Amitriptyline, Desipramine.					
	Total	75				

Course Designer

Dr. M. P. Kesavan

Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
	C-Programming:			
20PCHE12	Fundamentals &	Elective -II	75	5
	Applications in Chemistry			

Nature of Course	
Knowledge Oriented	✓
Skill Oriented	✓
Employability Oriented	✓
Entrepreneurship Oriented	

Course Relevance	
Local	
Regional	
National	
Global	✓

The course explains the importance of C-programming and various terms used in C. It also explains the applications of C in solving problems in chemistry.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge	
			Level	
	CO1	Recall and explain the basics of C Programming;	K1 K2	
	UUI	especially the operators, functions and expressions	111,114	
	<u> </u>	Build a program using proper data input and output	K1,K2,K3	
	CO2	logics.		
	CO3	Develop a program using the decision making looping	V1 V2 V2	
		logics.	N1,N2,N3	
	CO 4	Construct the C Programs for solving the problems by	V1 V2 V2 V4	
	CO4	chemical formula translation.	N1,N2,N3,N4	
(COF	Evaluate C programs to compute the output for chemical		
	LU3	formula in organic, inorganic and physical chemistry.	N1,N2,N3,N4,N3	
K	1-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate	

Mapping of CO with PO

	P01	P02	PO3	P04	P05
C01	2	3	1	2	2
CO2	2	3	1	2	1
CO3	1	3	2	1	1
C04	3	3	3	3	1
CO5	3	3	3	3	3
	•				

3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	2	1	1	2	2	
CO2	3	3	3	3	2	
CO3	3	2	2	3	2	
CO4	3	3	3	2	2	
CO5	3	3	3	3	2	
-Low 2-Medium		·	3-Strong			

1-Low

Syllabus

UNIT I

15 Hours Introduction and overview of C: Introduction – Importance of C-structure of C-programs - Simple programs-style of the language. Characters -Keywords, Variables and parameters - Data types – Constants - Declaration of and assignments of values to variables. Operators - Arithmetic, Relational, Logical, assignment, Increment and Decrement, Conditional and bitwise operators-Special operators. Expressions - Arithmetic -Evaluation of expression- Procedure of arithmetic operators- Library functions.

UNIT II

15 Hours

Data input and Output: Character input- The get char function – Character output- The putchar function - Entering input data- the Scan function-Writing output data- The print function- Formatted input and output datathe gets and puts functions-preparing and running a complete program. Decision making and branching: Decision making with IF statement simple IF statementthe IF...ELSE statement- Nesting of IF...Else statements - The ELSE IF ladder - The Switch statement - The? Operator - the GOTO statement.

UNIT III

15 Hours

Decision making and Looping: The WHILE statement - The DO statement-The FOR statement – Jumps in loops. Arrays: One dimensional array -Two dimensional arrays -Initializing two dimensional arrays-Multidimensional arrays. User defined functions: Need for user-defined functions – A multifunction program – The form of C functions -Return values and their types- Calling a function -Category of function- No arguments and no return values –Nesting functions- Recursions- The scope and life time of variables in function.
UNIT IV

Applications of C in Chemistry-I

Explanation of the formulae, equations and programs to solve the following problems in chemistry:

- 1. Calculation of Molecular weight of Organic Compounds.
- 2. Calculation of pH.
- 3. Determination on First Order rate constant for the given reaction
- 4. Evaluation of lattice energy using

i) Born- Haber Cycle

ii)Born –Lande equation

- 5. Computing ionic radii- Lande's method and Paulings method
- 6. Calculation of Normality, Molarity and Molality of a given solution
- 7. Converting Kelvin to Celsius temperature and vice versa.
- 8. Determination of enthalpy of a given solution
- 9. Evaluation of Cell constant

10. Calculation of energy of Hydrogen atom spectral lines.

UNIT V

Applications of C in Chemistry-II

Explanation of the formulae, equations and programs to solve the following problems in chemistry:

Organic Chemistry:

- Use of Recursive functions to calculate the number of π Resonance structures for an organic conjugated system using res - str = n! / ((n/2)!* ((n/2) + 1)!)
- 2. Empirical formula of Hydrocarbons and other Organic compounds Inorganic Chemistry:
- 1. Array manipulation to balance the chemical equations.
- 2. Half-life and average life periods of radioactive nuclei.
- 3. Binding energy of nucleus.

4. Program to get output as first ten elements of Periodic Table with their Name, Symbol, Atomic number and Atomic Weight.

Physical chemistry:

- 1. Calculation of RMS, average and MPV of gases.
- 2. Solving Quadratic equation to evaluate the Equilibrium constant for the reaction $H_2 + I_2 \longrightarrow 2HI$

3. Illustrate use of Loop to calculate the NMR frequency for a nucleus with Spin $\frac{1}{2}$

4. Mean activity coefficient of an Electrolyte (KCl)

15 Hours

Text Books

E. Balagurusamy, *Programming in ANSI C*, Tata McGraw- Hill Publishing Company Ltd., New Delhi, 2005, 3rd edition., 10th Reprint.

Reference Books

Brian W. Kernighan & Dennis M. Ritchie, *The C Programming Language*,
Prentice Hall of India Private Limited, New Delhi, 2001 2nd edition.
Byron S. Gottfried, *Programming with C*, Tata McGraw- Hill Publishing Company Ltd., New Delhi, 2001, 2nd edition.

R. Rajaram, *C Programming Made Easy*, Scitech Publications, Chennai 1999. Yeshavant Kanitkar, *Let Us C*,BPB Publications, New Delhi, 1999, 3rd edition.

Yeshavant Kanitkar, *C Projects*, BPB Publications, New Delhi, 1998.

K. V. Raman, *Computers in Chemistry*, Tata McGraw- Hill Publishing Company Ltd., New Delhi, 1993, 3rd edition.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Topic	No. of	Content Delivery
No.	Торіс	Lectures	Methods
	UNIT - I		
	Introduction – Importance of C-structure		
1.1	of C- programs- Simple programs-style of	4	E-Resources
	the language.		
	Characters–Keywords, Variables and		
1.2	parameters- Data types-Constants -	1	E-Resources
	Declaration of and assignments of values	4	
	to variables.		
	Operators-Arithmetic, Relational, Logical,		
1 2	assignment, Increment and Decrement,	Λ	E-Resources
1.5	Conditional and bitwise operators-Special	4	
	operators.		
	Expressions- Arithmetic - Evaluation of		
1.4	expression- Procedure of arithmetic	3	E-Resources
	operators- Library functions.		

UNIT - II							
2.1	Character input- The getchar function – Character output- The putchar function – Entering input data- the Scanf function- Writing output data- The printf function- Formatted input and output data-the gets and puts functions-preparing and running a complete program.	7	E-Resources				
2.2	Decision making and branching: Decision making with IF statement –simple IF statement-the IFELSE statement- Nesting of IFElse statements – The ELSE IF ladder –The Switch statement – The ?: operator – the GOTO statement.	8	E-Resources				
	UNIT - III						
3.1	Decision making and Looping: The WHILE statement – The DO statement-The FOR statement – Jumps in loops.	5	E-Resources				
3.2	Arrays: One dimensional array –Two dimensional arrays –Initializing two dimensional arrays- Multidimensional arrays.	5	E-Resources				
3.3	User defined functions: Need for user- defined functions – A multifunction program – The form of C functions - Return values and their types- Calling a function –Category of function- No arguments and no return values –Nesting functions- Recursions- The scope and life time of variables in function.	5	E-Resources				
	UNIT - IV						
4.1	Calculation of Molecular weight of OrganicCompounds.CalculationDeterminationonFirstOrderConstant for the given reaction	5	E-Resources				

4.2	Evaluation of lattice energy using i). Born- Haber Cycle ii). Born –Lande equation. Computing ionic radii- Lande's method and Paulings method. Calculation of Normality, Molarity and Molality of a given solution.	5	E-Resources	
4.3	Converting Kelvin to Celsius temperature and vice versa. Determination of enthalpy of a given solution. Evaluation of Cell constant. Calculation of energy of Hydrogen atom spectral lines.	5	E-Resources	
	UNIT - V			
5.1	Organic Chemistry: Use of Recursive functions to calculate the number of π Resonance structures for an organic conjugated system using res - str = n! / ((n/2)! * ((n/2) + 1)!). Empirical formula of Hydrocarbons and other Organic compounds.	5	E-Resources	
5.2	Inorganic Chemistry: Array manipulation to balance the chemical equations. Half- life and average life periods of radioactive nuclei. Binding energy of nucleus. Program to get output as First ten elements of Periodic Table with their Name, Symbol, Atomic number and Atomic Weight.	5	E-Resources	
5.3	Physical chemistry: Calculation of RMS, average and MPV of gases. Solving Quadratic equation to evaluate the Equilibrium constant for the reaction $H_2 + I_2 \rightarrow 2HI$. Illustrate use of Loop to calculate the NMR frequency for a nucleus with Spin $\frac{1}{2}$. Mean activity coefficient of an Electrolyte (KCl).	5	E-Resources	
	Total	75		

Course Code	Course Title	Category	Total Hours	Credits
20PCHC21	Organic Chemistry –II	Core -V	75	4

ature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented	✓	Regional	
Employability Oriented		National	
Entrepreneurship Oriented	1	Global	

The research in chemistry does require the knowledge on various spectroscopic techniques. This course fulfills the said requirements.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Explain the fundamentals of UV-Vis and IR Spectroscopy.	K1,K2
CO2	Make use of the basic principles underlying NMR Spectroscopy and its application in structural elucidation.	K1,K2,K3
CO3	Apply the concept of mass spectroscopy, ORD and CD in analyzing and determining the structure of organic molecules.	K1,K2,K3
CO4	Examine organic stereochemistry vis-à-vis optical and geometrical isomerism.	K1,K2,K3,K4
CO5	Determine the conformational analysis of cyclic, acyclic and heterocyclic system.	K1,K2,K3,K4,K5
Z1_Kno	wladga K2-Understand K2-Apply K4-Applysa	K5. Evaluato

K1-Knowledge K2-Understand K3-Apply K4- Analyse K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	1	2	3	3
CO2	3	1	2	3	2
CO3	3	1	2	3	2
CO4	3	1	2	2	3
C05	3	1	1	3	3
		0.14			0.0

1-Low

3-Strong

PSO1 PSO2 PSO3 PSO4 PS05 CO1 3 2 2 1 1 3 **CO2** 3 3 3 3 **CO3** 3 3 3 3 3 3 2 2 **CO4** 1 2 3 3 **CO5** 1 1 1 **3-Strong**

2-Medium

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

12 Hours

Ultraviolet spectroscopy: Basic principle - instrumentation - the absorption laws, types of electronic transitions - Effect of solvent and hydrogen bonding on λ max values - Woodward rules to calculate λ max values of conjugated dienes, conjugated polyenes, and carbonyl compounds.

Infrared spectroscopy: Basic principle – Molecular Vibrations instrumentation - characteristic IR absorption of different functional groups – factors influencing the vibrational frequencies

UNIT II

15 Hours

¹H NMR spectroscopy: Basic principles – number of signals – chemical shift -factors influencing chemical shift - spin-spin coupling - coupling constant and factors influencing coupling constant. Simplification of complex spectra – shift reagents, deuterium substitution and spin decoupling.

13C NMR spectroscopy: Basic principle – comparison with ¹H NMR – noise decoupling – off resonance decoupling – factors affecting the C-13 chemical shifts.

Advanced NMR Spectroscopy: Introduction to 2D-NMR - Classification of 2D experiments - HOMO and HETERO nuclear correlation - J resolved correlation. Correlation Spectroscopy (COSY): Pulse sequence - HOMO-COSY, HETERO-COSY, 1D- and 2D- INADEQUATE and NOESY.

UNIT III

18 Hours

Mass Spectroscopy: Basic instrumentation of Mass spectrometer - types of ions – molecular, isotopic, metastable and fragmentation ions – Tests for molecular ion peak - General fragmentation modes - Retro Diels - Alder reactions – McLafferty rearrangement – Fragmentation pattern of simple organic molecules. Application – Accurate Molecular weight, Molecular formula (Nitrogen rule) – Determination of structures of organic molecules. Introduction to ESI, MALDI and FAB mass spectrometer.

Optical rotatory dispersion (ORD) and Circular Dichroism (CD): Circularly polarized light – Circular birefringence and CD – plain curves and their applications – Cotton effects curves. Structural applications – axial haloketone rule, octant rule and their applications. Solving problems based on UV, IR, NMR and Mass data.

UNIT IV

15 Hours

15 Hours

Organic Stereochemistry: Optical isomerism: Symmetry elements – the concept of chirality – chirality about a center – specification by Cahn - Ingold-Prelog notations – compounds with more than one chiral center – erythro, threo and meso nomenclature – concept of prochirality – homotopic, enantiotopic and diastereotopic ligands and faces – Asymmetric synthesis – Cram's rule and Prelog's rule. Optical activity in allenes and spiranes – StereoChemistry of nitrogen compounds.

Geometrical isomerism: E and Z notation – Determination of configuration of geometrical isomers by simple techniques like hydroxylation, hydroboration and methods based on physical properties – Stereoisomerism in cyclic compounds – 3, 4 and 5 membered ring systems.

UNIT V

Configuration and conformation: Definition – conformational free energy- atropisomers - conformational analysis of acyclic, cyclic, heterocyclic systems – conformational analysis of cyclohexane system stability and isomerism in mono and disubstituted cyclohexanes – conformation and reactivity of cyclohexane derivatives - conformational analysis of fused ring system - decalins, and perhydrophenanthrene.

Text Books

D. Nasipuri, *Stereochemistry of Organic compounds*, New Age International, New Delhi 2004, 2nd edition.

William Kemp, *Organic Spectroscopy*, ELBS, UK, 1994, 4th Edition.

R.M. Silverstein, G.C. Bassler and T.C. Morrill, *Spectrometric Identification of organic compounds,* John Wiley, New York, 2005, 6th Edition.

Reference Books

E. L. Eliel and S. H. Wiley, *Stereochemistry of carbon compounds*, John Wiley & Son, Inc, 2003.

V. M. Potapov, *Stereochemistry*, MIR Publisher, Moscow, 1999.

H. Kagan, *Organic Stereochemistry*, Edward Arnold, London, 2001.

E.L. Eliel, N.L. Allinger, S.J. Angyal and G.A. Morrison, *Conformational Analysis,* Interscience, New York, 2004.

P. Wetirli Marchand, *Interpretation of ¹³C NMR* Spectra, VCH Weinheim, UK, 1987.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Topic	No. of	Content Delivery			
No.	Горіс	Lectures	Methods			
UNIT - I						
	Ultraviolet spectroscopy – basic principle					
	- instrumentation - the absorption laws,					
11	types of electronic transitions – Effect of	3	F-Resources			
1.1	solvent and hydrogen bonding on λ max	5	L Resources			
	values. Effect of solvent and hydrogen					
	bonding on λmaxvalues.					
	Woodward rules to calculate λ max values					
1.2	of conjugated dienes, conjugated polyenes	3	Chalk & Talk			
	and carbonyl compounds.					
13	1 3 Infrared spectroscopy – basic principle – 3		F-Resources			
1.5	Molecular Vibrations – instrumentation.	5				
	Characteristic IR absorption of different					
1.4	functional groups. Factors influencing the	3	Group Discussion			
	vibrational frequencies.					
	UNIT - II		r			
	¹ H NMR spectroscopy: Basic principles –					
	number of signals – chemical shift - factors					
2.1	influencing chemical shift – spin-spin	3	E-Resources			
	coupling – coupling constant and factors					
	influencing coupling constant.					
	Simplification of complex spectra – shift					
2.2	reagents, deuterium substitution and spin	3	E-Resources			
	decoupling.					
	¹³ C NMR spectroscopy: Basic principle –					
23	comparison with 1H NMR – noise	3	Chalk & Talk			
2.0	decoupling – off resonance decoupling –		chuin a ruin			
	factors affecting the C-13 chemical shifts.					

2.4	AdvancedNMRSpectroscopy:Introduction to 2D- NMR -Classification of2D experiments - HOMO and HETEROnuclearcorrelation - Jresolvedcorrelation.	3	E-Resources
2.5	Correlation Spectroscopy (COSY): Pulse sequence – HOMO-COSY, HETERO-COSY, 1D- and 2D- INADEQUATE and NOESY.	3	Group Discussion
	UNIT - III		
3.1	Basic instrumentation of Mass spectrometer - types of ions – molecular, isotopic, metastable and fragmentation ions – Tests for molecular ion peak.	3	E-Resources
3.2	General fragmentation modes- Retro Diels - Alder reactions – McLafferty rearrangement – Fragmentation pattern of simple organic molecules.	5	E-Resources
3.3	Application – Accurate Molecular weight, Molecular formula (Nitrogen rule) – Determination of structures of organic molecules. Introduction to ESI, MALDI and FAB mass spectrometer.	4	Group Discussion
3.4	Optical rotatory dispersion (ORD) and Circular Dichroism (CD): Circularly polarized light – Circular birefringence and CD – plain curves and their applications – Cotton effects curves – structural applications –	3	E-Resources
3.5	Axial haloketone rule, octant rule andtheir applications. Solving problems based on UV, IR, NMR and Mass data.	3	Chalk & Talk
	UNIT - IV		
4.1	Optical isomerism: Symmetry elements – the concept of chirality – chirality about a center – specification by Cahn -Ingold- Prelog notations – compounds with more than one chiral center – erythro, threo and meso nomenclature.	5	E-Resources

4.2	Concept of prochirality – homotopic, enantiotopic and diastereotopic ligands and faces – Asymmetric synthesis – Cram's rule and Prelog's rule. Optical activity in allenes and spiranes – StereoChemistry of nitrogen compounds.	5	E-Resources
4.3	Geometrical isomerism: E and Z notation – Determination of configuration of geometrical isomers by simple techniques like hydroxylation, hydroboration and methods based on physical properties – Stereoisomerism in cyclic compounds – 3, 4 and 5 membered ring systems.	5	Chalk & Talk
	UNIT - V		
5.1	Configuration and conformation – definition – conformational free energy- atropisomers- conformational analysis of acyclic, cyclic, heterocyclic systems	5	E-Resources
5.2	Conformational analysis of cyclohexane system: stability and isomerism in mono and disubstitutedcyclohexanes.	5	Chalk & Talk
5.3	Conformation and reactivity of cyclohexane derivatives - conformational analysis of fused ring system - decalins, and perhydrophenanthrene.	5	E-Resources
	Total	75	

Course Designer

Mr. G. Arivalagan

Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC22	Inorganic Chemistry –II	Core -VI	75	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented		Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	\checkmark

The course gives detailed information about supramolecular chemistry, solid state chemistry, inorganic rings, cages clusters and polymers, It also explains the chemistry of lanthanides and actinides.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No	Course Outcome	Knowledge		
110.		Level		
	Describe supramolecular chemistry of transition metal			
C01	compounds, structure and their application in various	K1,K2,K3		
	fields.			
CO2	Analyze the structure and defects of solids.	K1,K2,K3,K4		
CO 2	Compare and solve the structures of Borone, S-N, P-N			
05	of inorganic rings, cages, clusters and polymers.	K1,K2,K3,K4,K3		
CO4	Categorize the given S-N, P-N, silicone, P-O compounds			
LU4	and deduce their structure.	K1,K2,K3,K4,K3		
COE	Make use of the occurance, extraction, spectral and	V1 V2 V2		
605	magnetic properties of lanthanides andactinides.	N1,N2,N3		
1 Knor	wladge K2 Understand K2 Apply K4 Applyse	VE Evoluato		

K1-Knowledge K2-Understand K3-Apply K4- Analyse K5- Evaluate

Mapping of CO with PO

	1				
	P01	PO2	P03	P04	P05
C01	2	3	1	3	1
CO2	3	1	1	3	2
CO3	3	1	1	3	3
CO4	3	1	1	3	2
C05	2	1	1	3	2
4 7		0.14	1.		0.01

1-Low

3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	1	1	1	3
CO3	3	2	2	2	3
CO4	3	2	2	3	3
CO5	3	1	2	1	2
-Low 2-Medium				3-Strong	

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

15 Hours

Supramolecular chemistry: Definition, Nature of supramolecular interactions - Non-Covalent interactions, Host - guest interaction, complexing involving crowns and cryptands - cyclodextrine - Inclusion compounds- Clatharates - intercalation compounds _ Molecular recognition, Types of recognition, Self - assembly. General properties of Supra molecular complexes- Molecular Library - Transition metal mediated supramolecules - Directional bond approach - Molecular triangles (Pd & Pt) - Molecular squares (Pd, Pt & Re)- Molecular rectangles - (Pd, Pt, Cu & Re) Molecular Cages (Pd, Pt & Re) and their applications.

UNIT II

18 Hours

Solid-state chemistry: Packing of atoms and ions- close packing arrangements-HCP, CCP and BCC lattice. Radius ratio rules- Limiting radius ratio. Structure of typical lattices such as calcite, cesium chloride, Nickel arsenide, Fluorite, Antifluorite, Cadmium iodide, Perovskite, Spinels (normal and inverse). Bragg's equation- problems involving Bragg's equation. Crystal structure determination- X-ray diffraction study, Electron and Neutron diffractions. Crystal defects- point - Schotky and Frenkel defect - line and plane defects- colour centers- non- stoichiometric Compounds- experimental methods of study of non-stoichiometry- effect of imperfections and non- stoichiometry on physical properties-types of solids-electronic structure of solids- free electron and band theories.

Inorganic Rings, Cages, Clusters and Polymers-I: Electron deficient compounds: Borane and carboranes - Synthesis, structure and bonding (VBT and MO approach) – topological treatment-wades rule – styx numbers - structural studies by NMR – metallocarboranes - other heteroatom boron derivatives, borates – boroxines - B-P and B-As heterocycles. Synthesis, structure and bonding in Binary sulphur nitrils, S-N cations and anions, cyclic S-N compounds, S-N halogen compounds-Bonds and electroncounting in S-N heterocycles-polythiazyls. Structure of aluminosilicates - mica, clay, zeolites, fullers earth. Manufacture, Types and Uses of glasses.

UNIT IV

15 Hours

Inorganic Rings, Cages, Clusters and Polymers - II: P-N Heterocyclics compounds: Phosphonitrilic Synthesis, Structure bonding and phosphazene oligomers-high polymers - polymeric phosphorus nitrides hydrolysis of phosphazenes - reactions of halo phosphazenes - aminolysis metathetical reactions - reaction with organometallic reagents - Friedel-Crafts substitutions -rearrangements - theories of bonding - electronic structure and aromaticity - posphazene oligomers - high polymers polymeric phosphorus nitrides. High, low nuclearcity carbonyl clusters halide clusters. Isolobal analogy - Synthesis, structure and bonding in Poly anions and isopoly anions of phosphorous, vanadium, chromium, Nolybdenum and tugston. Hetero poly anions of molybdenum and tungsten. Structural prediction by Wade's rule - Cappit rule.

UNIT V

12 Hours

a) Lanthanides: Occurrence - differences between 4f and 5f orbitals -Separation techniques (Fractional crystallization, precipitation, ionexchange, solvent-extraction and thermal decomposition - Selective reduction and oxidation) - Electronic configurationOxidation states, Lanthanide contraction - Spectral and Magnetic properties - Ln chelatesorganometallic compounds of Ln. Uses of lanthanides (shift reagents, Pu bomb) and their compounds - aqueous chemistry of uranyl compounds - position in the periodic table.

b) Actinides: Synthesis of elements - Extraction of Th, U and Pu - electronic configuration and oxidation states, spectral and magnetic properties-position in the periodic table.

Text Books

Bradley J. Holliday & Chad A. Mirkin, *Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry*- Reviews, Angew. Chem. Int. Ltd., 2001.

Katsuhiko Ariga, Toyoki Kunitaka, *Supramolecular Chemistry-Fundamentals and Applications: Advanced Textbook*, Springer Science & Business Media, 2006.

W. Jones, C. N. R. Rao, *Supramolecular Organization and Materials Design*, Cambridge University Press, Landon, 2001.

Lee, J. D. Concise *Inorganic Chemistry*, Blackwell Science Ltd., London. 2002, 5th Edition.

Keer, H.V. Principles of the *Solid State*, Wiley Eastern Ltd., 1993.

H. G. Heal, *the Inorganic Heterocyclic Chemistry of Sulphur, Nitrogen and Phosphorus,* Academic press, New York, 1980.

J. D. Woolings, *Non Metal Rings, Cages and Clusters*, John Wiley and sons, New York, 1989.

P.J. Durrant and B. Durrant, *Introduction to advanced inorganic chemistry*, Longman Group Ltd, London, 1970.

Purcell K.F. and Kotz J.C., Saunders, *Inorganic Chemistry*, Philadelphia, 1977.

D. A. Skoog and D. M. West, *Fundamentals of Analytical Chemistry*, Holler Saunders college publishing, USA, 1998, 6th Edition.

F.A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, Wiley-Interscience publications, John Wiley & Sons, New Delhi, 1988, 5th Edition.

Reference Books

J. E. Huheey, Ellen A. Keiter, Richard L. Keiter, *Inorganic Chemistry*, Pearson Education (Singapore) Pte. Ltd., Delhi, 2004, 4th Edition.

I. Azaroff, *Introduction to Solids*, Tata McGraw hill, New Delhi, 2004.

K. Chakrabarthy, *Solid State Chemistry*, New Age International Publishers, (P) Ltd., 2005.

D. F. Shriver and P.W. Atkins, *Inorganic Chemistry*, Oxford University Press, London, 1999.

Wahid U. Malik, G.D. Tuli and R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand & Co. Ltd., New Delhi, 2006.

William W. Porterfield, *Inorganic Chemistry*, Elsevier, New Delhi, 2005, 2th Edition.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Module		Content Delivery
No.	Торіс	Lectures	Methods
	UNIT - I		
1.1	Definition, Nature of supramolecular interactionsNon- Covalent interactions. Host - guest interaction. Complexing involving crowns and cryptandscyclodextrine.	5	E-Resources
1.2	Molecular recognition, Types of recognition. Self- assembly. General properties of Supra molecular complexes- Molecular Library- Transition metal mediated supramolecules - Directional bond approach.	5	Chalk & Talk
1.3	Molecular triangles (Pd & Pt)- Molecular squares (Pd, Pt & Re)- Molecular rectangles-(Pd, Pt, Cu & Re) Molecular Cages (Pd, Pt & Re) and their applications-Inclusion compounds- Clatharates - intercalation compounds.	5	E-Resources
	UNIT - II	[
2.1	Packing of atoms and ions- close packing arrangements-HCP,CCP and BCC lattice - Radius ratio rules- Limiting radius ratio.	4	E-Resources
2.2	Structure of typical lattices such as calcite, cesium chloride, Nickel arsenide, Fluorite, Antifluorite, Cadmium iodide, Perovskite, Spinels (normal and inverse) - Bragg's equation- problems involving Bragg's equation.	5	E-Resources
2.3	Crystal structure determination- X-ray diffraction study, Electron and Neutron diffractions - Crystal defects- point – Schotky and Frenkel defect - line and planedefects-colour centers.	5	Chalk & Talk
2.4	Nonstoichiometric Compounds - experimental methods of study of non- stoichiometry - Effect of imperfections and non- stoichiometry on physical properties.	4	Discussion

	UNIT - III		
3.1	Electron deficient compounds: Borane and carboranes - Electron deficient compounds: Borane and carboranes - topological treatment-wades rule – styx numbers.	3	E-Resources
3.2	Structural studies by NMR- metallocarboranes - other heteroatom boron derivatives-borates-boroxines-B-P and B-As heterocycles.	5	E-Resources
3.3	P-N HETEROCYCLICS - Phosphonitrilic compounds: Synthesis, Structure and bonding - Phosphazene oligomers - high polymers- Polymeric phosphorus nitride.	4	Group Discussion
3.4	S-N HETEROCYCLICS: Synthesis, structure and bonding in Binary sulphur nitrils, S-N cations and anions, cyclic S-N compounds, S-N halogen compounds - bonds and electron counting in S-N heterocyclespolythiazyls.	3	E-Resources
	UNIT - IV		
4.1	Synthesis of P-N-skeleton - Hydrolysis of phosphazenes- reactions of halo phosphazenes-aminolysis-metathetical reactions.	5	Chalk & Talk
4.2	Reaction with organometallic reagents - Friedel-Crafts substitutions - rearrangements - Theories of bonding- electronic structure and aromaticity - Phosphazene oligomers-high polymers- polymeric phosphorus nitrides.	5	E-Resources
4.3	Metal Clusters: Synthesis, structure and bonding in Poly anions and isopoly anions of phosphorous, vanadium, chromium, Nolybdenum and tugston. Hetero poly anions of molybdenum and tungsten	5	Chalk & Talk

	UNIT - V		
5.1	Lanthanides: Occurrence - differences between 4f and 5f orbitals - Separation techniques (Fractional crystallization, precipitation, ion-exchange, solvent- extraction and thermal decomposition- Selective reduction and oxidation)	3	E-Resources
5.2	Electronic configuration- Oxidation states, Lanthanide contraction- Spectral and Magnetic properties- Ln chelates- organometallic compounds of Ln.	3	Chalk & Talk
5.3	Lanthanides as shift reagents in NMR- uses of lanthanides and their compounds - Aqueous chemistry of uranyl compounds- position in the periodic table.	3	E-Resources
5.4	Actinides: Synthesis of elements- Extraction of Th and U and Pu. Electronic configuration and oxidation states, spectral and magnetic properties- position in the periodic table	3	Chalk & Talk
	Total	75	

Course Designer Ms. A. Nihath Nazleen

Assistant Professor of Chemistry

Course code	Course Title	Category	Total Hours	Credits
20PCHC23	Physical Chemistry –II	Core -VII	75	4

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented		Regional	
Employability Oriented		National	Ī
Entrepreneurship Oriented		Global	

The course enables the students to gain knowledge on electrochemistry, statistical thermodynamics and principles of conventional spectroscopic methods.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Summarise the fundamental concepts and theories of electrochemistry	K1, K2
CO2	Make use of the applications of electrochemistry.	K1, K2,K3
CO3	Identify the need and fundamental derivation of statistical thermodynamics.	K1, K2,K3
CO4	Examine the applications of statistical thermodynamics	K1, K2,K3,K4
CO5	Apply the concepts of spectroscopic techniques such as IR, Raman and microwave.	K1, K2,K3

K1-Knowledge K2-Understand K3-Apply K4-Analyse K5-Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
C01	3	1	3	3	2
CO2	2	2	3	3	3
CO3	2	1	1	2	3
CO4	2	1	1	2	3
CO5	3	3	2	3	3
1-Low		2-Me	dium		3-Strong

Mapping of CO with PSO

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	2	1	2
CO2	3	3	3	2	3
CO3	3	3	1	1	2
CO4	3	3	2	2	3
C05	3	3	3	3	3
. T		0 M -	1		

1-Low

Syllabus

UNIT I

2-Medium

3-Strong

15 Hours

Electrochemistry – I: Theory of strong electrolytes – Interionic attraction theory – Debye-Huckel theory of strong electrolytes - Debye- Huckel model of ionic atmosphere–Debye-Huckel Onsager equation- derivation, verification and modifications- Debye – Falkenhagen effect and Wien effect; Electrical double layers – formation – Structure of electrified interfaces – Stern model. Debye-Huckel limiting law- extension- Huckel-Bronsted equation - Determination of activity coefficients using Bronsted equation – Applications of conductivity measurements; Nernst equation and its significance – reversible and irreversible cells - electrodes – SHE – Calomel – Glass electrode – Platinum electrode – Glassy carbon electrode – ion selective electrode and measurement of pH.

UNIT II

Electrochemistry-II: Over voltage – Theories of over voltage - applications of over voltage-hydrogen and oxygen overvoltage; Butler-Volmer equation - Tafel equation; Corrosion - principles of electrochemical corrosion – dry and wet corrosion and its mechanism – Pilling - Bedworth rule. Types of corrosion- galvanic, aeration, stress, pitting corrosion and passivity – factor influencing corrosion – corrosion control - cathodic production - corrosion inhibitors. Principles of Polorography - Cyclic Voltametry – quasi – reversible –irreversible voltamogram; electrochemical energy conversions-Nickel Cadmium, lead acid battery; Fuel cells – H2 - O2 Fuel cell – methyl alcohol fuel cell.

15 Hours

UNIT III

Statistical thermodynamics-I: Need for statistical mechanics or thermodynamics-Ensemble- types of ensemble – micro canonical canonical and grand canonical ensemble; Phase space- microstatesprobability and distribution- Maxwell Boltzmann classical distribution lawderivation in term of degeneracy; Partition function (Q) – relation between partition function and the following thermodynamic functions – internal energy (E), Helmholtz free energy (A), Pressure (P), Enthalpy (H), Gibbs free energy (G), chemical potential (µi), heat capacity (Cv) and entropy (S);Derivation of Sackur-Tetrode equation – thermodynamic properties of monoatomic gases.

UNIT IV

15 Hours

Statistical thermodynamics-I: Quantum statistics - Bose-Einstein Statistics derivation- application of Bose-Einstein statistics for a photon gas – Planck's radiation formula - Derivation of Rayleigh - Jeans law-Stefan Boltzman equation. Fermi-Dirac statistics derivation - Application of Fermi-Dirac statistics to electron gas in metals; Population inversion-negative absolute temperature - heat capacity of diatomic gases-Einstein's theory and Debye's theory of heat capacities of solids- third law of thermodynamics and statistical entropy - hydrogen ortho and para nuclear states.

UNIT V

15 Hours

Spectroscopy – I: Absorption and emission of electromagnetic radiation (emr) – LASER - Interaction of electromagnetic radiation with matter – Einstein coefficients; Microwave, IR and Raman spectroscopy of diatomic molecules – determination of molecular parameters – vibrational spectra of polyatomic molecules – IR and Raman active modes – overtone and combination bands – Fermi resonance – group frequencies and coupling interaction.

Text Books

Bokris J. O. M., Reddy A. K. N., *Modern Electrochemistry, Vol I*, Plenum Press, New York, 1978.

Crow Dr., *Principles and Applications of Electrochemistry*, Chapman Hall, UK, 1988,

Venkataraman R., Rengarajan K., Raghavan P. S., *Electrochemistry*, 2007, 1st edition

Glasstone S., *Thermodynamics for Chemists*, Eastern Wiley Publication, 2002.

Lee, Sears, Tercotte, *Statistical Thermodynamics*, Addision Wesley Publishing Co., London, 1973, 1st Edition.

Reference Books

Antropov L., *Theoretical electrochemistry*, MIR Publications, New Delhi, 1999. Glasstone S., *An Introduction to Electrochemistry*, Von Nostrand Co. Inc., Toronto, 2002.

Gupta M. C., *Statistical Thermodynamics*, Wiley Eastern limited, New Delhi, 1993.

Kuriakose J. C., Rajaram, J., *Thermodynamics*, Shoban lal Nagin Chand, New Delhi, India, 1999.

Veera Reddy, K., *Symmetry and spectroscopy of molecules*, Newage International (P) Ltd., 1998

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Tonic	No. of	Content Delivery
No.	Topic	Lectures	Methods
	UNIT - I		
	Theory of strong electrolytes – Interionic		
11	attraction theory – Debye-Huckel theory	2	Chally & Tally
1.1	of strong electrolytes - Debye-Huckel	5	Chair & Tair
	model of ionic atmosphere		
	Debye-Huckel Onsager equation-		
1.2	derivation, verification and modifications-	2	E-Resources
	Debye – Falkenhagen effect and Wien	5	
	effect; Electrical double layers formation		
	Structure of electrified interfaces – Stern		
	model. Debye-Huckel limiting law-		
1.3	extension- Huckel-Bronsted equation -	3	Discussion
	Determination of activity coefficients		
	using Bronsted equation		
	Applications of conductivity		
1.4	measurements; Nernst equation and its	2	Challe & Talle
	significance – reversible and irreversible	3	UTIAIK & TAIK
	cells		

1.5	electrodes – SHE – Calomel – Glass electrode – Platinum electrode – Glassy carbon electrode – ion selective electrode and measurement of pH.	3	E-Resources
	UNIT - II		
2.1	Over voltage – theories of over voltage- applications of over voltage-hydrogen and oxygen overvoltage; Butler-Volmer equation- Tafel equation	3	Discussion
2.2	Corrosion- principles of electrochemical corrosion – dry and wet corrosion and its mechanism – Pilling-Bedworth rule	3	Chalk & Talk
2.3	Types of corrosion- galvanic, aeration, stress, pitting corrosion and passivity – factor influencing corrosion – corrosion control- cathodic production - corrosion inhibitors.	3	E-Resources
2.4	Principles of Polorography - Cyclic Voltametry –quasi – reversible – irreversible voltamogram	3	E-Resources
2.5	electrochemical energy conversions- Nickel Cadmium, lead acid battery; Fuel cells – H_2 - O_2 Fuel cell – methyl alcohol fuel cell.	3	Chalk & Talk
	UNIT - III		
3.1	Need for statistical mechanics or thermodynamics-Ensemble- types of ensemble – micro canonical - canonical and grand canonical ensemble	3	E-Resources
3.2	Phase space- microstates- probability and distribution- Maxwell Boltzmann classical distribution law- derivation in term of degeneracy	3	Chalk & Talk
3.3	Partition function (Q) – relation between partition function and the following thermodynamic functions – internal energy (E), Helmholtz free energy (A), Pressure (P), Enthalpy (H), Gibbs free energy (G),	3	Discussion
3.4	chemical potential (μi), heat capacity (Cv) and entropy(S);	3	Chalk & Talk

3.5	Derivation of thermodynamicSackur-Tetrode properties-of monoatomic gases.	3	Chalk & Talk
	UNIT - IV		
4.1	Quantumstatistics-Bose-EinsteinStatisticsderivation-applicationofEinsteinstatisticsfor a photon gas	3	Discussion
4.2	Planck's radiation formula-Derivation of Rayleigh-Jeans law-Stefan Boltzman equation	3	E-Resources
4.3	Fermi-Dirac statistics derivation - Application of Fermi-Dirac statistics to electron gas in metals; Population inversion	3	Chalk & Talk
4.4	negative absolute temperature -heat capacity of diatomic gases-Einstein's theory and Debye_s theory of heat capacities of solids	3	Chalk & Talk
4.5	third law of thermodynamics and statistical entropy - hydrogen ortho and para nuclear states.	3	E-Resources
	UNIT - V		
5.1	Absorptionandemissionofelectromagnetic radiation (emr) - LASER- Interaction of electromagnetic radiationwith matter	3	E-Resources
5.2	Einstein coefficients; Microwave, IR and Raman spectroscopy of diatomic molecules	3	Chalk & Talk
5.3	determination of molecular parameters – vibrational spectra of polyatomic molecules	3	Discussion
5.4	IR and Raman active modes – overtone and combination bands	3	E-Resources
5.5	Fermi resonance – group frequencies and coupling interaction	3	Chalk & Talk
	Total	75	

Course Designer Mrs. A. Mumthaj Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC2P	Physical Chemistry Practical	Core -VIII	150	5

Nature of Course	
Knowledge Oriented	\checkmark
Skill Oriented	\checkmark
Employability Oriented	
Entrepreneurship Oriented	

Course Relevance		
Local		
Regional		
National		
Global	\checkmark	

This lab course enables the students to acquire practical knowledge on physical chemistry experiments such as electrochemical, kinetics, surface chemistry and colorimetric estimations.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Show the various types of conductometric titrations.	K1,K2
CO2	Operate the various types of potentiometric titrations.	K1,K2,K3
CO3	Connect the analytical skill on adsorption of oxalic acid.	K1,K2,K3,K4
CO4	Measure the analytical skill on adsorption of acetic acid	K1,K2,K3,K4,K5
CO5	Interpret the colorimetric estimation techniques.	K1,K2,K3,K4,K5
K1-Knowledge K2-Understand K3-Apply K4- Analyse		K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	PO5
C01	2	3	1	2	1
CO2	2	3	1	2	2
CO3	3	3	2	3	3
CO4	2	3	2	3	2
CO5	2	3	1	2	2
1-Low		2-Me	dium		2.Strong

T-LOM

z-mealum

3-Surong

	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	1	2
CO2	3	3	1	1	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	2	1	2	1

1-Low

2-Medium

3-Strong

S. No.	EXPERIMENTS			
1.	Estimation of HCl & CH3COOH by conductometrically			
2.	Estimation of HCl & NH4Cl by conductometrically			
3.	Estimation of Na2CO3 by conductometrically			
4.	Estimation of K2SO4 by conductometrically			
5.	Kinetics of base hydrolysis of an ester by conductometrically			
6.	Estimation of Fe(II) using KMnO4 by potentiometrically			
7.	Estimation of Fe(II) using CAS potentiometrically			
8.	Estimation of KI with KMnO4 by potentiometrically			
9.	Determination of pH of buffer solution by potentiometrically			
10.	Estimation of mixture of halides (KI and KCl) by potentiometrically			
11.	Adsorption of oxalic acid on to activated charcoal			
12.	Adsorption of acetic acid on to activated charcoal			
13.	Determination of concentration of KMnO4 soluion by spectrophotometrically.			

Course Designer

Mrs. A. Mumthaj

Assistant Professor of Chemistry

Course code	Course Title	Category	Total Hours	Credits
20PCHE21	Analytical Chemistry	Elective - II	75	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented	✓	Regional	
Employability Oriented	✓	National	
Entrepreneurship Oriented		Global	√

Elicit electro analytical, thermo analytical and spectro analytical methods.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Outline the principles of Precipitation Techniques and their applications	K1, K2
CO2	Make use of the minimization of errors, standard deviation, Student's test, Q test and T-test	K1, K2,K3
CO3	Examine the Electroravimetry, Coulometry, Voltammetry and Amperometry	K1, K2,K3,K4
CO4	Utilize the thermal analyses such as TGA, DTA and DSC.	K1, K2,K3
CO5	Evaluate fundamental concepts and applications of Spectroanalytical methods.	K1, K2,K3,K4,K5

K1-Knowledge K2-Understand K3-Apply K4-Analyse K5-Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
C01	2	3	2	2	2
CO2	1	3	3	2	3
CO3	2	3	2	2	2
CO4	1	3	3	3	2
CO5	3	1	3	3	3
1-Low	2-Medium				3-Strong

11 0			-		
	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	2	1	2
CO2	3	3	1	2	3
CO3	3	3	2	1	2
CO4	3	3	3	2	3
CO5	3	3	3	1	3
1-Low		2-Medium			3-Strong

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

15 Hours

15 Hours

Precipitation Techniques: Introduction –properties and precipitating reagents-Colloidal precipitates-Co-precipitation –Post-precipitation Precipitates from homogenous solutions – Surface adsorption –Drying and ignition of precipitates – Application of gravimetric methods.

UNIT II

Error analysis: Classification of errors -accuracy and precision minimization of errors - significant figures - significant figures in computation - statistical treatment of data- mean, median, standard deviation, variance, relative standard deviation – spread, errors – standard deviation of computed results-reliability of results-Q test, T-test confidence limit-comparison of results- Student's test -F-test T-test comparison of the means of two samples- correlation and regression: linear regression (least square analysis).

UNIT III

Electro analytical Methods: Electro analytical Techniques: Electrogravimetry: Theory of electrogravimetric analysis - Electro analytical separation and determination of metal ions, Coulometry: Electrolytic cell - work electrodes - auxilliary electrode and reference electrode - Coulometric titrations. Voltammetry - Cyclic voltammetry stripping voltammetry -chromopotentiometry -Amperometry; Amperometric titrations.

UNIT IV

15 Hours

15 Hours

Thermo analytical Methods: Thermal analysis; Theory and principles of DTA and TGA - factors affecting the position of DT and T G tracesapplication of DTA and TGA to the thermal behavior of the following compounds- crystalline copper sulphate, calcium oxalate monohydrate, calcium acetate monohydrate, - Comparison of DTA and TGA - principle and application of DSC -determination of degree of conversion of high alumina cement.

Spectroanalytical methods: *Colorimetry*: Beer and Lambert's law – terminology – conditions for a satisfactory colorimetric analysis – methods of colour measurement or comparison - principles of colorimetric determinations of Cr, Fe, Mn - simultaneous spectrophotometric determination of Cr and Mn. *Nephelometry and turbidometry*: Determination of sulphate and phosphate. *Fluorimetry*: Principle – application of flourimetry in the determination of Ca, Cd and Zn and determination of codeine and morphine in a mixture. *Flame spectrometry:* Theory – interferences – AAS - applications in the determination of Mg²⁺, Ca²⁺ in tap water.

Text Books

D. A. Skoog, D. M. West and F. J. Holler, *Fundamentals of Analytical Chemistry*, Saunders College Publishing, Philadelphia, 1996, 7th Edition. Willard HH, Merritt LL, Dean JA, Settle PA. *Instrumental Methods of Analysis*, NewYork: Van Nostrand, 1988, 6th Edition.

Reference Books

J. Basset et al., *Vogel's Text book of Qualitative Inorganic Analysis*, Longman, ELBS, Essex, 1989, 5th Edition.

J. G. Dick, *Analytical Chemistry*, Tata-McGraw Hill, 1973.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Tonic	No. of	Content Delivery
No.	lo.		Methods
	UNIT - I		
11	Introduction-properties and precipitating	3	Chalk & Talk
1.1	reagents-		
1.2	Colloidal precipitates-Co-precipitation –	2	E-Resources
	Post-precipitation	5	
1.3	Precipitates from homogenous solutions	3	Discussion
1 /	Surface adsorption-Drying and ignition of	2	Chally & Tally
1.4	precipitates	5	

1.5	Application of gravimetric methods.	3	E-Resources					
	UNIT- II							
2.1	Error analysis: Classification of errors – accuracy and precision –minimization of errors	3	Discussion					
2.2	significant figures – significant figures in computation	3	Chalk & Talk					
2.3	statistical treatment of data- mean, median, standard deviation, variance, relative standard deviation –spread, errors	3	E-Resources					
2.4	standard deviation of computed results- reliability of results-Q test, T-test – confidence limit-comparison of results	3	Chalk & Talk					
2.5	Student's test –F-test T-test – comparison of the means of two samples- correlation and regression: linear regression (least square analysis).	3	E-Resources					
UNIT-III								
3.1	ElectroanalyticalTechniques:Electrogravimetry:Theoryofelectrogravimetric analysis	3	E-Resources					
3.2	Electro analytical separation and determination of metal ions.	3	Chalk & Talk					
3.3	Coulometry: Electrolytic cell - work electrodes - auxilliary electrode and reference electrode	3	Discussion					
3.4	Coulometric titrations-Voltammetry - Cyclic voltammetry.	3	Chalk & Talk					
3.5	strippingvoltammetry-chromopotentiometry-Amperometry;Amperometric titrations	3	E-Resources					
	UNIT- IV							
4.1	Thermal analysis; Theory and principles of DTA and TGA	3	Discussion					
4.2	Factors affecting the position of DT and T G traces.	3	E-Resources					

4.3	application of DTA and TGA to the thermal behavior of the following compounds- crystalline copper sulphate, calcium oxalate monohydrate	3	Chalk & Talk
4.4	calcium acetate monohydrate. Comparison of DTA and TGA	3	Chalk & Talk
4.5	Principle and application of DSC – determination of degree of conversion of high alumina cement.	3	E-Resources
	UNIT- V		
5.1	Colorimetry: Beer and Lambert's law – terminology – conditions for a satisfactory colorimetric analysis – methods of colour measurement or comparison.	3	E-Resources
5.2	principles of colorimetric determinations of Cr, Fe, Mn - simultaneous spectrophotometric determination of Cr and Mn.	3	Chalk & Talk
5.3	Nephelometryandturbidometry:Determination of sulphate and phosphate.	3	Discussion
5.4	Fluorimetry: Principle – application of flourimetry in the determination of Ca, Cd and Zn and determination of codeine and morphine in a mixture.	3	E-Resources
5.5	Flamespectrometry:Theory–interferences–AAS-applications in thedetermination of Mg2+, Ca2+ in tap water.	3	Chalk & Talk
	Total	75	

Course Designer

Dr. M.P. Kesavan

Assistant Professor of Chemistry

Course Code	Cou	rse '	Title Category		Total Hours	Cred	lits	
20PCHE22	Compute in C	r Ap hem	plications istry	ions Elective -II		75	5	
Nature of Course					Course	Relevance		
Knowledge Orier	nted	\checkmark			Local			
Skill Oriented		\checkmark			Regional			
Employability Or	riented	ed 🖌 National						
Entrepreneurshi	p Oriented				Global			✓

The course explains the concepts of internet programming, HTML, JAVA APPLET and their applications in chemistry. It gives hands-on experience on chemistry-related application soft wares.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Outline Internet protocols, online usage of internet,	K1, K2
	search engine, e-publication and electronic mail.	
CO2	Make use of HTML and Java programs to chemistry.	K1, K2,K3
	Analyze the chemical structures in scientific manner and	
CO3	get the mass and NMR simulations; and also get an idea	K1, K2,K3,K4
	about computational chemistry.	
	Apply the knowledge of diffraction techniques to the	
CO4	study of structural chemistry; and understand the	V1 V2 V2
U04	applications of shelx and PLATON software in	N1, N2,N3
	crystallography.	
COF	Evaluate the application of RASMOL and MATLAB in	
105	chemistry.	N1, N2,N3,N4N3
K1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	PO5
C01	1	3	1	2	1
CO2	1	2	2	3	1
CO3	3	3	3	3	2
CO4	2	3	2	3	1
CO5	1	2	1	2	1

- F F - O -					
	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	2	2	3	1
CO2	3	1	2	3	1
CO3	3	3	3	3	3
CO4	3	2	1	2	2
CO5	3	1	1	2	1
1-Low	2-Medium				3-Strong

Mapping of CO with PSO

Syllabus

UNIT I

15 Hours

15 Hours

INTERNET: Introduction- History- Importance of the Internet- Internet Access- Dial-Up connection, Direct connection and equipments - Internet protocol(TCP/IP,FTP HTTP, TELNET and WAP)-Internet addressing – Domain Name-Mail address-Uniform Resource Locator(URL)-Web Browsing- Searching the Web- Search Engines(Yahoo, Google)- Intranet – Searching and utilizing Popular websites in Chemistry. Online literature survey- accessing of e-journals. Preparing articles for e-publications. Online structure drawing- Collection of spectral data using databases.

ELECTRONIC MAIL: Introduction-Working of E-Mail - Word processor for E-Mail- Mailing Basics – Composing and sending of an E-Mail- Address Book – Signature- File Attachments- Customizing your Mail program – Advantages and Disadvantages of E-Mail - Tips for effective E-Mail use-Smile keys.

UNIT II

HTML: HTML - Need- Structure of HTML Document- HTML Tags-Horizontal line Tags- Background and Text color Tags- Font Tags-MARQUEES Tags- Adding pictures - Ordered and Unordered Lists- Creating Links- Construction of Periodic Table with required data for first ten elements- Frames – Developing and hosting of Web Pages for a given molecule / chemical.

JAVA APPLETS: - Simple and Java applets with graphics- Applications of applet to draw 2D and 3D view of molecules.

Applications of chemdraw and chem 3D software in chemistry: Introduction- Tool Pallets- Construction of the molecule using Chem Draw-Tools- Manipulating a molecule-Model display- Display type- Structure displays- Molecular Surface display- NMR simulation and interpretation-Naming IUPAC- Structure from Name and Name from Structure-Computational Concepts: - Computational methods: - Potential energy surface, geometry Optimizations property (calculations)-Molecular Mechanics Theory in brief - Animations- Difference between Chemdraw and Chem 3D.

UNIT IV

Applications of SHELX program in chemistry: Basics of Crystals-Symmetry and operations- Seven Crystal systems- Bravais lattices – X-Ray Diffractometers- Unit cell parameters- X-ray data- Deduction of Space group - Structure solution and refinement using SHELX- Structure building using PLATON- H-Bonding.

UNIT V

Applications of RASMOL and MATLAB in chemistry

RASMOL: Introduction- User commands– Identification of disulfidebridges and visualization of :- d polar residues, the distribution of polar and non-polar amino acids, side chain of carboxylate and amine , the different structural motives like α -helix, β -sheet and β - turn, the amino acids bound to Zn, active site of carboxypeptidase A, the environment of the active center.

MATLAB: Introduction-advantages- getting started- windows for workspace, command interpretation, command history and current history- Addition- Use of sine and Cosine of angles(pi)- variable _ans'- order of operations- significant decimals- Representation of matrix- getting transpose of a matrix- display of images- saving images-solving linear equations(case m=n only).

Text Books

Alexis Leon and Mathews Leon, *Fundamentals of Information Technology* Leon TECH World, UBS Publishers & Distributors Ltd., 1999.

E. Balagurusmy, *Programming with Java - A Primer*, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2003,2nd Edn., 15th Reprint

C. Xavier, *World wide web design with HTML*, , Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2000, 2nd Reprint.

15 Hours

15 Hours

Reference Books

Margaret Levine Young, *Internet Complete Reference*, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2001.

Barbara Kassev, *Using the Internet*, EE edition, New Delhi, 1998, IV Edition.

Alexis Leon and Mathews Leon, *Internet for Everyone*, Leon TECH World, Publishers & Distributors Ltd., 2000.

John Zukowski, *Mastering Java 2*, BPB Publications, New Delhi, 2002.

Patrick Naughten, The *Java Hand Book*, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2002, 11th Reprint.

Herbert Schildt, *Java 2- The Complete Reference*, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2001, 4th Edn.

Holzner, John Zukowski, *Java 2 Complete*: Steven BPB Publications, New Delhi, 1999,1st Indian Edn..

Harley Hahn, The *Internet Complete Reference*, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2001, 2nd Edn.

Chem Draw & Chem 3D - Manual

Shelx, Rasmol and MATLAB- *Manuals*.

REFERENCES in the NET

http://SCS99.unige.Che/eng/toc.html2.http://hackberry.chem.niu.edu:to/o/web page.html

http://java.Sun.Com/applet/applets/chemical Models/index.html http://ccl.osc.edu/chemistry.html5.http://www.umass.eud/microbio/rasmol/ http://www.Mdli.com/cgi/dynamic/welcome.html/ (for CHIME similar to Rasmol)

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Topic	No. of	Content Delivery
No.	-	Lectures	Methods
	UNIT – I		
1.1	INTERNET: Introduction- History- Importance of the Internet- Internet Access- Dial-Up connection, Direct connection and equipments Internet protocol(TCP/IP,FTP HTTP, TELNET and WAP)	3	Chalk & Talk
1.2	Internet addressing – Domain Name-Mail address-Uniform Resource Locator(URL)- Web Browsing- Searching the Web- Search Engines(Yahoo, Google)- Intranet	3	E-Resources
1.3	Searching and utilizing Popular websites in Chemistry. On line literature survey- accessing of e-journals. Preparing articles for e-publications. Online structure drawing- Collection of spectral data using databases.	3	Discussion
1.4	ELECTRONIC MAIL: Introduction- Working of E-Mail - Word processor for E- Mail- Mailing Basics – Composing and sending of an E-Mail- Address Book – Signature	3	Chalk & Talk
1.5	File Attachments- Customizing your Mail program –Advantages and Disadvantages of E-Mail - Tips for effective E-Mail use- Smile keys.	3	E-Resources
	UNIT – II		
2.1	HTML - Need- Structure of HTML Document- HTML Tags- Horizontal line Tags- Background and Text color Tags- Font Tags	3	Discussion
2.2	MARQUEES Tags- Adding pictures - Ordered and Unordered Lists	3	Chalk & Talk
2.3	Creating Links- Construction of Periodic Table with required data for first ten elements- Frames	3	E-Resources

2.4	Developing and hosting of Web Pages for a given molecule / chemical.	3	Chalk & Talk
2.5	JAVA APPLETS: - Simple and Java applets with graphics- Applications of applet to draw 2D and 3D view of molecules.	3	E-Resources
	UNIT – III		
3.1	Chem-DrawandChem3D:Introduction-ToolPallets-Constructionof the molecule using ChemDraw-Tools-Manipulating a molecule.	3	E-Resources
3.2	Model display- Display type- Structure displays- Molecular Surface display	3	Chalk & Talk
3.3	NMR simulation and interpretation- Naming IUPAC- Structure from Name and Name from Structure-Computational Concepts: - Computational methods	3	Discussion
3.4	Potential energy surface, geometry Optimizations property (calculations)	3	Chalk & Talk
3.5	Molecular Mechanics Theory in brief - Animations- Difference between Chemdraw and Chem 3D.	3	E-Resources
	UNIT – IV		
4.1	Basics of Crystals- Symmetry and operations- Seven Crystal systems Bravais lattices	3	Discussion
4.2	X-Ray Diffractometers - Unit cell parameters.	3	E-Resources
4.3	X-ray data- Deduction of Space group	3	Chalk & Talk
4.4	Structure solution and refinement using SHELX	3	E-Resources
4.5	Structure building using PLATON- H- Bonding.	3	Chalk & Talk
	UNIT –V		
-----	--	----	--------------
5.1	RASMOL: - Introduction- User commands– Identification of disulfide- bridges and visualization of :-hydrophobic and polar residues, the distribution of polar and non-polar amino acids	3	E-Resources
5.2	side chain of carboxylate and amine , the different structural motives like α -helix, β -sheet and β - turn, the amino acids bound to Zn, active site of carboxypeptidase A, the environment of the active center	3	Chalk & Talk
5.3	MATLAB: - Introduction-advantages- getting started- windows for workspace, command interpretation, command history and current history	3	Discussion
5.4	Addition- Use of sine and Cosine of angles(pi)- variable _ ans'- order of operations- significant decimals-	3	Chalk & Talk
5.5	Representationofmatrix-gettingtranspose of a matrix-display of images-savingimages-solvinglinearequations(case m=n only).	3	E-Resources
	Total	75	

Course Designer Ms. M. Rekha Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC31	Organic Chemistry - III	Core -IX	90	5

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented	✓	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	\checkmark

The course explains the application of various reagents in organic synthesis and chemistry of steroids, vitamins, peptides and nucleic acid. It also explains the importance of green chemistry.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge
	Make use of chemical reagents in various organic	Level
C01	transformation such as oxidation, reduction, catalysis	K1,K2,K3
	etc.,	
	Apply the concepts and mechanism of photochemical and	
CO2	thermal reactions of carbonyl, alkenes and conjugated pi	K1,K2
	electrons compounds.	
CO3	Analyze the structure and activity of compounds with	K1.K2.K3.K4
000	steroid skeleton and vitamins	111,112,110,111
C04	Explain the structure and synthesis of amino acids,	K1 K2 K3 K4 K5
COT	peptides, proteins and nucleic acid	K1,K2,K3,K4,K3
C05	Apply their knowledge to synthesis compounds in a	K1 K2 K3
005	greener way	111,112,113

K1-Knowledge K2-Understand K3-Apply K4-Analyse K5-Evaluate

	P01	P02	PO3	P04	P05
C01	3	1	3	2	3
CO2	3	1	1	2	3
CO3	3	3	2	3	3
CO4	3	3	2	3	2
C05	2	2	2	3	1

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	3	3
CO2	3	3	2	2	3
CO3	3	3	3	3	3
CO4	3	2	2	1	2
CO5	3	1	3	3	2

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

2-Medium

3-Strong

18 Hours

Reagents in Organic Synthesis: Use of the following reagents in organic syntheses and functional group transformations – complex metal hydrides, Gilman's reagent, lithium dimethyl cuprate – lithium diisopropylamide (LDA) –– trimethyl silyliodide – tri-n-butyl tin hydride – Jones reagent – pyridinium chloro chromate – SeO₂ – peracids – DMSO – Pb(OAc)₄ – HIO₄ – Prevost and Woodward hydroxylation – Etard's reagent – Waker_s reagent – RuO₄ – Hg(OAc)₂ – Oppenauer oxidation – DDQ – LiAlH₄, NaBH₄, Lawessons reagent – Crown ethers – Thallium nitrate – Phase transfer catalysts – Birch reduction.

UNIT II

18 Hours

18 Hours

Photochemistry and Pericyclic reactions: General principles – orbital symmetry considerations related to photochemical reactions, thermal versus photochemical reactions – principles of energy transfer – photochemical reactions of ketones – Norrish type I and type II reactions – Paterno Buchi reaction – Dienone photochemistry – photo reduction, photochemical oxidation, Barton reaction – photochemistry of alkenes and dienes. Pericyclic reactions Application of symmetry to orbital interactions – selection rules (Woodward and Hoffmann rules) – Electrocyclisation, cycloaddition and sigmatropic rearrangements – cheletropic reactions – Diels-Alder Reactions: Endoselectivity and regioselectivity – Explanation of these reaction in terms of correlation diagrams approach, FMO approach and Dewar – Zimmermann approach – (PMO) Huckel-Mobius concepts

UNIT III

Chemistry of Steroids and Vitamins: Introduction – Structural elucidation of Cholesterol – Androsterone and Testosterone (male sex hormones) – Oesterone, progesterone (Female sex hormone). Classification of Vitamins: Nomenclature of Vitamins – Strucure and Biological functions of vitamins: Vitamin A (Retinol), V itamin B₂ (Riboflavin), Vitamin B₆ (Pyridoxine), Vitamin B₁₂, Vitamin C, D and E (Structure elucidation and synthesis not required).

UNIT IV

18 Hours

Chemistry of Peptides and Nucleic Acid : (a) Polypeptides – Classification - the peptide linkage - Structure of amino acids – primary, secondary, tertiary and quaternary structure) – Solid phase peptide synthesis (Merifield) – use of protecting groups and reagents – Structural elucidation of glutathione, thyroxin and oxytocin.

(b) Nucleosides, Nucleotides and Nucleic acids – structure and synthesis of nucleosides and nucleotides – Elementary treatment on the structure of DNA and RNA.

UNIT V

18 Hours

Green Chemistry: Principles of green chemistry – planning a green synthesis in a laboratory – general interest for solvent free processes-Microwave synthesis: Introduction and characteristics of microwave heating – difference between conventional heating and microwave heating. Dielectric polarization – dipolar polarization – application and advantages of microwave heating over conventional heating.

Text Books

I.L. Finar, *Organic Chemistry Vol. II*, ELBS, UK , 2005, V Edition.

S.F. Dyke, *Chemistry of Vitamins*, Interscience, Toronto, 1965.

O.P. Agarwal *Chemistry of Natural products Vol. I and II*, Himalaya Publishing House, New Delhi, 2002.

V.K. Ahluwalia, M. Kidwai, *New trends in Green Chemistry*, Anamaya Publishers, New Delhi, 2006, Second Edition.

Gurdeep Chatwal, *Organic Chemistry of natural products Vol. I*, Himalaya Publishing House, 1997.

Morrison and Boyd, *Organic Chemistry*, Prentice-Hall of India private limited, New Delhi, 6th Edition.

Reference Books

Hermann Dugus, *Bioorganic Chemistry*, Springer International, New Delhi, 2004, 3rd Edition.

D.L. Nelson and M.M. Cox, *Lehningers' Principal of Biochemistry*, W.H. Freeman and Company, New York, 2008, 5th Edition.

L.F Fieser and M. Fieser, *Steroids,* Reinhold Press, Atlanta, 1991.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonic	No. of	Content Delivery
No.	Topic	Lectures	Methods
	UNIT – I		
1.1	Use of the following reagents in organic syntheses and functional group transformations.	3	Chalk & Talk
1.2	complex metal hydrides, Gilman_s reagent, lithium dimethyl cuprate – lithium diisopropylamide (LDA).	4	E-Resources
1.3	Trimethyl silyliodide – tri-n-butyl tin hydride – Jones reagent – pyridinium chloro chromate.	3	Discussion
1.4	SeO ₂ – peracids – DMSO – Pb(OAc) ₄ – HIO ₄ – Prevost and Woodward hydroxylation – Etard's reagent – Waker_s reagent – RuO4 – Hg(OAc) ₂ .	4	Chalk & Talk
1.5	Oppenauer oxidation – DDQ – LiAlH ₄ , NaBH ₄ , Lawessons reagent – Crown ethers – Thallium nitrate – Phase transfer catalysts – Birch reduction.	4	Chalk & Talk
	UNIT – II		
2.1	General principles – orbital symmetry considerations related to photochemical reactions, thermal versus photochemical reactions. principles of energy transfer.	4	Discussion
2.2	photochemical reactions of ketones – Norrish type I and type II reactions – Paterno Buchi reaction – Dienone photochemistry – photo reduction, photochemical oxidation, Barton reaction.	3	Chalk & Talk
2.3	 photochemistry of alkenes and dienes. Pericyclic reactions Application of symmetry to orbital interactions – selection rules (Woodward and Hoffmann rules). 	4	E-Resources

2.4	Electrocyclisation, cycloaddition and sigmatropic rearrangements – cheletropic reactions – Diels-Alder Reactions: Endoselectivity and regioselectivity.	3	Chalk & Talk
2.5	Explanation of these reaction in terms of correlation diagrams approach, FMO approach and Dewar – Zimmermann approach – (PMO) Huckel-Mobius concepts.	4	Chalk & Talk
	UNIT – III		
3.1	Structural elucidation of Cholesterol – Androsterone and Testosterone (male sex hormones).	4	E-Resources
3.2	Oesterone, progesterone (Female sex hormone). Classification of Vitamins: Nomenclature of Vitamins	4	Chalk & Talk
3.3	Strucure and Biological functions of vitamins: Vitamin A (Retinol), Vitamin B ₂ (Riboflavin)	4	Discussion
3.4	Vitamin B_6 (Pyridoxine), Vitamin B_{12}	3	E-Resources
3.5	Vitamin C, D and E (Structure elucidation and synthesis not required).	3	Discussion
	UNIT – IV		
4.1	Polypeptides – Classification - the peptide linkage.	3	Discussion
4.2	Structure of amino acids – primary, secondary, tertiary and quaternary structure.	4	E-Resources
4.3	Solid phase peptide synthesis (Merifield) – use of protecting groups and reagents – Structural elucidation of glutathione, thyroxin and oxytocin.	4	Chalk & Talk
4.4	Nucleosides, Nucleotides and Nucleic acids – structure and synthesis of nucleosides and nucleotides.	4	E-Resources
4.5	Elementary treatment on the structure of DNA and RNA.	3	Chalk & Talk

	UNIT – V			
5 1	Principles of green chemistry – planning a	3	F-Resources	
5.1	green synthesis in a laboratory.	5	E-Resources	
	General interest for solvent free processes			
5.2	- Microwave synthesis: Introduction and	4	Chalk & Talk	
	characteristics of microwave heating.			
F 2	Difference between conventional heating	Λ.	Discussion	
5.5	and microwave heating.	Ч	Discussion	
54	Dielectric polarization – dipolar	Λ.	Discussion	
5.4	polarization.	Ч	Discussion	
55	Application and advantages of microwave	2	Chally & Tally	
5.5	heating over conventional heating.	5	UIIAIK & TAIK	
	Total	90		

Course Designer

Mr. G. Arivalagan

Assistant Professor of Chemistry.

Course Code	Course Title	Category	Total Hours	Credits
20PCHC32	Inorganic Chemistry -III	Core -X	90	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented	\checkmark	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	✓

The course explains the various theories and reaction mechanism of coordination compounds and inorganic photochemical reactions. It also gives information on the applications of various spectral techniques in determining the structure and property of Inorganic compound/complexes.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
C01	Explain various theories and properties of coordination compounds.	K1,K2
CO2	Examine the mechanism of co-ordination compounds.	K1,K2,K3,K4
CO3	Apply inorganic photochemical reactions to evaluate the reaction path and in photochemical energy conversion like solar cell, fuel cell etc.	K1,K2,K3,K4,K5
CO4	Outline the basic principles and instrumentation of spectral techniques like IR, Raman, NMR, NQR and electronic spectroscopy and analyze their application in determining the structure and property of Inorganic compound/complexes	K1,K2,K3,K4
C05	Outline the principles of various spectral techniques like EPR, PES, IR, MBS etc and interpretation of the spectra.	K1,K2,K3
X1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

K1-Knowledge

K2-Understand

	P01	P02	P03	P04	P05
CO1	3	1	2	2	3
CO2	3	1	2	3	3
CO3	2	2	3	2	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Laru		2 Ma	d:) Charlen

PSO1 PSO2 PSO3 PSO4 PSO5 CO1 3 3 2 2 3 3 2 3 2 **CO2** 2 3 3 3 3 **CO3** 1 3 3 **CO4** 3 3 3 3 3 3 3 3 **CO5 3-Strong** 2-Medium

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

18 Hours

Coordination Chemistry-I: Nomenclature of coordination complexes-Stereochemistry of coordination compounds: Geometrical isomerismoptical isomerism of complexes having C. N. 4, 6 - Stability constants -Factors affecting Stability constant in solution – Determination of Stability constant Spectrophotometric method - Chelate effect.

Theories of bonding – VBT – CFT – MO theories – Splitting of d-orbitals in Octahedral, Tetrahedral and Square planar geometries – CFSE calculation in terms of Dq - Factors affecting crystal field splitting – Spectrochemical series - Nephelauxetic effect - Magnetic properties of transition metal complexes - Para, Dia, ferro magnetism and antiferro magnetism-Calculation of spin-only magnetic moments.

UNIT II

18 Hours

18 Hours

Coordination **Chemistry-II**: Substitution reactions of octahedral complexes S_N1, S_N2, SNiCB - lability-inertness- square planar substitution reactions - Factors affecting reactivity of square planar complexes- Trans effect- Theories of Trans effect and its applications - Reactions of coordinated ligands - Acid hydrolysis - anation reactions and base hydrolysis. Mechanism of electron transfer reactions - Outer sphere, inner sphere electron transfer reactions - Marcus Theory and its applications. Synthesis of coordination compounds using electron transfer and substitution reaction.

UNIT III

Inorganic Photochemistry: Excited states of coordination complexes properties of excited states charge transfer and energy transfer photochemical pathways. Photoredox reactions of Co(III) and Cr(III) complexes – photosubstitution reactions – photoaquation, photoanation and photorearrangements - Role of TiO2 in solar energy conversion -Photoredox chemistry of Ruthenium bipyridyl and Ruthenium(II) poly pyridyl compounds-energy conversion and photochemical decomposition of water using Ru complexes- storage of solar energy

Physical Methods in Inorganic Chemistry-I: Electronic spectra: selection rules – polarization – splitting of spectral terms – L.S Coupling scheme-Russel- Saunders method- Term Symbols -Orgel and Tanabe-Sugano diagram. – Evaluation of 10 Dq and beta d², d³, d⁷, d⁸ systems IR and Raman spectra: Applications of IR and Raman. Selection rules to structure determination – IR spectral studies of carbonyl compounds. Nuclear magnetic resonance: Application of chemical shift and spin coupling to structure determination using multiple NMR (H,P,F) chemical exchange, dynamic processes in inorganic and organometallic compounds- Fluxional NMR of metal carbonyls and allyl complexes – paramagnetic NMR and contact and pseudo contact shifts.

UNIT V

18 Hours

Physical Methods In Inorganic Chemistry-II: Electron paramagnetic resonance spectroscopy: Applications of hyperfine splitting and g factor to structural elucidation- Zero field splitting-Krammer's Degeneracy- EPR spectra of Cu (II) and Mn (II) in various site symmetry- covalency of metalligand bonding by EPR study of dynamic processes in solids- Study of phase transition by Mn (II) – John Teller distortions in Cu (II) complexes. Mossbauer spectroscopy: Basic principles- Doppler effect- Isomer shift-Electron nuclear hyperfine interactions- Quadrupole and magnetic interactions in the study of structure and bonding in Iron and Tin complexes and in Biological systems.

Text Books

Shriver D. F. and Atkins, P.W, *Inorganic Chemistry*, Oxford University Press, London, 1999.

Cotton F.A. and Wilkinson, G, *Advanced Inorganic Chemistry*, Wiley-Interscience publications, John Wiley & Sons, New York, 1988, V Edn.

Gurdeep R. Chatwal & M. S. Yadav, *Coordination Chemistry*, Himalaya Publishing House, 1993, I Edn.

Figgis, B.N, *Introduction to Ligand Fields*, Wiley Interscience, Eartern Ltd., New Delhi, 1964, I Edn.,

Banerjea, D, *Coordination Chemistry*, Tata McGraw- Hill Publishing Co. Ltd., 1993.

Purcell, K. F. Kotz, J.C. Holt Saunders, *Inorganic Chemistry*, Philedelphia, USA, 1977.

Pradeep. T, *A Textbook of Nanoscience and Nanotechnology*, Tata, McGraw-Hill Education, India, 2003.

Drago, R. S. Van Nostrand and Reinhold, *Physical methods in Chemistry*, 1976.

Nakamoto, Kazuo, **Infrared and Raman Spectra of Inorganic and coordination compounds**, John Wiley and Sons, New York, 1986, IV edition.

Raymond Chang M, **Basic principles of Spectroscopy**, Mc Graw Hill, New Delhi, 1971.

Straughan B. P. and Walker S. *Spectroscopy Vol.3,* Chapman and Hall , NewDelhi, 1976,

T. Pradeep, *Text book of nanoscience & Nanotechnology*, 2017.

Reference Books

Douglas and McDaniel *A Concise of Inorganic Chemistry*, Oxford and IBH Publishing Company (P) Ltd., New Delhi, 2002.

E. Huheey, Ellen A. Keiter, Richard L. Keiter, *Inorganic Chemistry*, Pearson Education (Singapore) P.Ltd., Delhi, 2004, IV Edn.,

Wahid U. Malik, G. D. Tuli and R. D. Madan, *Selected Topics in Inorganic Chemistry, S. Chand & Co. Ltd., New Delhi, 2006.*

William W. Porterfield, *Inorganic Chemistry*, Elsevier, New Delhi, 2005, 2nd Edn., A.G. Sharpe, *Inorganic Chemistry, Addition*, Wesley Longman, UK, 2004, 3rd Edn.

Gary L. Miessler and Donald A. Tarr, *Inorganic Chemistry*, Pearson Education, Inc., New Delhi, 2004, 3rd Edn.,

Raguse, *Nano technology-Basic Science and Emerging Technologies*, Overseas Press India (P). Ltd. New Delhi, 2005, Ist Edn, .

Mark Ratner and Daniel Ratnar, *A Gentle Introduction to the Next Nanotechnology*, Big Idea, Pearson Education Inc., US and UK.

D.N. Sathyanarayana, *Electronic Absorption Spectroscopy and Related Techniques*, Universities Press (India) Limited, 2001.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module No.	Торіс	No. of Lectures	Content Delivery Methods
	UNIT – I		
1.1	Nomenclature of coordination complexes- Stereochemistry of coordination compounds: Geometrical isomerism- optical isomerism of complexes having C. N. 4, 6.	3	Chalk & Talk
1.2	Stability constants – Factors affecting Stability constant in solution – Determination of Stability constant Spectrophotometric method - Chelate effect.	4	E-Resources
1.3	Theories of bonding – VBT – CFT – MO theories – Splitting of d-orbitals in Octahedral, Tetrahedral and Square planar geometries.	4	Discussion
1.4	CFSE calculation in terms of Dq - Factors affecting crystal field splitting – Spectrochemical series – Nephelauxetic effect.	4	E-Resources
1.5	Magnetic properties of transition metal complexes – Para, Dia, ferro magnetism and antiferro magnetism- Calculation of spin-only magnetic moments.	3	Discussion
	UNIT – II		
2.1	Substitution reactions of octahedral complexes $S_N 1$, $S_N 2$, SNiCB.	5	Discussion
2.2	lability-inertness- square planar substitution reactions - Factors affecting reactivity of square planar complexes-	4	Chalk & Talk
2.3	Trans effect- Theories of Trans effect and its applications - Reactions of coordinated ligands - Acid hydrolysis - anation reactions and base hydrolysis.	3	E-Resources
2.4	Mechanism of electron transfer reactions - Outer sphere, inner sphere electron transfer reactions	3	Chalk & Talk
2.5	Marcus Theory and its applications. Synthesis of coordination compounds using electron transfer and substitution reaction.	3	E-Resources

	UNIT – III				
3.1	Excited states of coordination complexes – properties of excited states charge transfer and energy transfer.	4	E-Resources		
3.2	photochemical pathways. Photoredoxreactions of Co(III) and Cr(III) complexesphotosubstitution reactions.	4	Chalk & Talk		
3.3	Photoaquation, photoanation and photorearrangements - Role of TiO2 in solar energy conversion.	4	Discussion		
3.4	Photoredox chemistry of Ruthenium bipyridyl and Ruthenium(II) poly pyridyl compounds.	3	Chalk & Talk		
3.5	Energy conversion and photochemical decomposition of water using Ru complexes- storage of solar energy	3	Discussion		
UNIT – IV					
4.1	Electronic spectra: selection rules – polarization – splitting of spectral terms – L.S Coupling scheme.	3	Discussion		
4.2	Russel- Saunders method- Term Symbols -Orgel and Tanabe-Sugano diagram. – Evaluation of 10 Dq and beta d2, d3, d7, d8 systems.	4	E-Resources		
4.3	IR and Raman spectra: Applications of IR and Raman. Selection rules to structure determination – IR spectral studies of carbonyl compounds.	3	Chalk & Talk		
4.4	Nuclear magnetic resonance: Application of chemical shift and spin coupling to structure determination using multiple NMR (H,P,F) chemical exchange, dynamic processes in inorganic and organometallic compounds.	5	E-Resources		
4.5	Fluxional NMR of metal carbonyls and allyl complexes – paramagnetic NMR and contact and pseudo contact shifts	3	Chalk & Talk		

	UNIT – V		
5.1	Electron paramagnetic resonance spectroscopy: Applications of hyperfine splitting and g factor to structural elucidation - Zero field splitting- Krammer's Degeneracy.	5	E-Resources
5.2	EPR spectra of Cu (II) and Mn (II) in various site symmetry- covalency of metal-ligand bonding by EPR study of dynamic processes in solids- Study of phase transition by Mn (II).	3	Chalk & Talk
5.3	John Teller distortions in Cu (II) complexes.	2	Discussion
5.4	Mossbauer spectroscopy: Basic principles- Doppler effect- Isomer shift.	3	Chalk & Talk
5.5	Electron nuclear hyperfine interactions- Quadrupole and magnetic interactions in the study of structure and bonding in Iron and Tin complexes and in Biological systems.	5	Chalk & Talk
	Total	90	

Course Designer Dr. M. Nihath Nazleen

Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC33	Physical Chemistry-III	Core -XI	75	5

Nature of Course		Course Relevance	
Knowledge Oriented	~	Local	
Skill Oriented	\checkmark	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	\checkmark

This course has been framed to enable the students to gain knowledge on basic and applications of group theory, spectroscopic techniques such as UV, PES, ESR, and NQR. It also gives information on nano science and technology.

Course Outcomes (CO)

On the completion of the course the student will be able to

	No.	Course Outcome	Knowledge Level
	CO1	Summaries the fundamentals of group theory.	K1, K2
	CO2	Analyze the applications of group theory.	K1, K2,K3,K4
	CO3	Interpret the physical concepts of electronic and Photo electron Spectroscopy.	K1, K2,K3,K4K5
	CO4	Apply the theory and applications of ESR, Mossbauer and NQR Spectroscopic techniques.	K1, K2,K3
	CO5	Summarize the preparation, characterization and evaluate application of nanoparticles.	K1, K2,K3,K4K5
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

	P01	PO2	P03	P04	PO5
C01	3	1	2	2	3
CO2	3	1	2	2	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	1	3	3	3	2
1-Low		2-Me	dium		3-Strong

11 0					
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	1	3
CO2	3	3	2	2	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	2	3	3	2
1-Low		2-Me	dium		3-Strong

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

15 Hours

15 Hours

Group Theory I (Basics of Group Theory): Introduction - Symmetry elements and symmetry operations - Definition of mathematical group four cardinal properties of a group - closure, associative, idendity and inverse rule - cyclic group Abelian group (H₂O only) and non-abelian group (NH₃ only) - Group multiplication table- C₂v and C₃v; subgroup - similarity transformation - class of group - Point group - Assignment of point group of simple molecules. Matrix-introduction - matrix representation of the symmetry operations - identity (E), Proper axis of rotation (Cn), Vertical reflection (σv), Improper axis of rotation (Sn) and Inverse (i). Representation definition - reducible and irreducible representation of a group - block factorization. The great orthogonality theorem (GOT) - rules for writing (properties of) irreducible representations - Projection operator (definition only) - character table definition - construction of character table C₂V and C₃V

UNIT II

Group Theory II (Applications of Group Theory): Prediction of symmetry of atomic orbitals - linear vector, rotation vector - symmetries of tensor like properties (α & g); Prediction of orbitals and hybridization in BF₃ and CH₄ molecules; Normal mode analysis - H₂O and NH₃; Direct product representation and its applications - identification of IR and Raman active vibration of H₂O and N₂F₂ - selection rules to predict allowed and forbidden electronic transition in UV-Visible spectra for example formaldehyde (HCHO); HMO energy calculation for ethylene and butadiene. **15 Hours**

UNIT III

Spectroscopy – II: Electronic spectra of diatomic molecules - molecular quantum numbers - dissociation energy calculations - Birge-sponer extrapolation technique - pre-dissociation spectra - charge transfer spectra - Fortrat diagram - electronic spectra of molecules absorbance oscillator strength. Photoelectron spectroscopy (PES) - basic principles, spectrum, Xray PES, (ESCA) - vibrational structure - PES of argon, oxygen and nitrogen.

Spectroscopy – III: ESR spectroscopy - principle, g-factor, experimental method, spectrum, fine and hyperfine structures and applications (H-atom, CH3 radical, p-1,4 benzosemiquinone radical anion, naphthalene anion, Tempol). NQR spectroscopy - quadrupole movement, coupling constant, quadrupole transition-electric field gradient and molecular structure (7N¹⁴, 5B¹¹, 17Cl³⁶). Mossbauer spectroscopy - recoilless emission and resonance absorbtion, experimental method, isomeric shift and electric quadrupole splitting in Fe⁵⁷.

UNIT V

15 Hours

Chemistry Of Nanoscience and Technology: Introduction- Types of nano materials-Nanoparticles, nanotubes-Carbon nanotubes: SWCNT and MWCNT, nanowires, nanoribbons, nanorods, nano composites. Preparation methods-Chemical vapour deposition, Sol-Gel method, Electro deposition method, Ball milling method, Chemical reduction method, spin coating technique, Solvothernal synthesis, Colloidal method, Co-precipitation method, Flame spray synthesis (Arc Plasma)-Preparation of metal oxide nanoparticles. Characterization Techniques like SEM, TEM, AFM, XRD, UV-DRS, B.E.T analysis, DLS, PL -Applications of Nanoparticles.

Text Books

Cotton F. A., *Chemical applications of group theory*, wiley Eastern Ltd., UK, 1971, 3rd Edition

Ramakrishnan. V. & Gopinathan M.S., *Group theory in chemistry*, Vishal Publication, New Delhi, India, 1988.

Veera Reddy, K. *Symmetry and spectroscopy of molecules*, Newage International (P) Ltd.,

Lehniger A. L. *Principles of BioChemistry*, 1998 4th Edition.

Reference Books

G.M. Barrow, *Introduction to molecular spectroscopy*, McGraw-Hill, Newyork. Banwell G.M., *Fundamentals of molecular spectroscopy*, TMH company Ltd, 4th Edition.

Chang R., *Basic principles of spectroscopy*, McGraw-Hill, 1971.

Straughan B.P., Walker S., *Spectroscopy Vol. 1, 2, 3,* Chapman and Hall, 1976.

Drago R.S., *Physical methods in chemistry*, Saunder college publishing, 1999.

Raymond Chang, *Physical Chemistry with application to biochemical system*, Mc Millan Publishing Company. Inc., New Delhi, 2002.

Graham L Patrick, *An Introduction to Medicinal Chemistry*, Oxford University Press.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Торіс	No. of	Content Delivery
NO.		Lectures	Methods
		Γ	
1.1	Introduction - Symmetry elements and symmetry operations - Definition of mathematical group - four cardinal properties of a group - closure, associative, idendity and inverse rule.	3	Chalk & Talk
1.2	Cyclic group Abelian group (H_2O only) and non-abelian group (NH3 only) - Group multiplication table- C_2v and C_3v ; subgroup - similarity transformation - class of group.	3	E-Resources
1.3	Point group - Assignment of point group of simple molecules. Matrix-introduction - matrix representation of the symmetry operations - idendity (E), Proper axis of rotation (Cn), Vertical reflection (σν), Improper axis of rotation (Sn) and Inverse (i).	3	Discussion
1.4	Representation definition - reducible and irreducible representation of a group - block factorization. The great orthogonality theorem (GOT) - rules for writing (properties of) irreducible representations.	3	E-Resources
1.5	Projection operator (definition only) - character table definition - construction of character table C ₂ V and C ₃ V.	3	Discussion
	UNIT – II	ſ	
2.1	Prediction of symmetry of atomic orbitals - linear vector, rotation vector - symmetries of tensor like properties (α & g).	3	Discussion
2.2	Prediction of orbitals and hybridization in BF ₃ and CH ₄ molecules; Normal mode analysis - H ₂ O and NH ₃	3	Chalk & Talk

2.3	Direct product representation and its applications - identification of IR and Raman active vibration of H_2O and N_2F_2 .	3	E-Resources
2.4	Selection rules to predict allowed and forbidden electronic transition in UV- Visible spectra for example formaldehyde (HCHO).	3	E-Resources
2.5	HMO energy calculation for ethylene and butadiene	3	E-Resources
	UNIT – III		
3.1	Electronic spectra of diatomic molecules - molecular quantum numbers.	3	E-Resources
3.2	Dissociation energy calculations - Birge- sponer extrapolation technique -	3	Chalk & Talk
3.3	Pre-dissociation spectra - charge transfer spectra - Fortrat diagram.	3	Discussion
3.4	electronic spectra of molecules absorbance oscillator strength Photoelectron spectroscopy (PES) - basic principles, spectrum, X-ray PES, (ESCA) -	3	E-Resources
3.5	vibrational structure - PES of argon, oxygen and nitrogen.	3	Discussion
	UNIT – IV		
4.1	ESR spectroscopy - principle, g-factor, experimental method, spectrum, fine and hyperfine structures and applications (H- atom, CH ₃ radical	3	Discussion
4.2	p-1,4 benzosemiquinone radical anion, naphthalene anion, Tempol). NQR spectroscopy	3	E-Resources
4.3	Quadrupole movement, coupling constant, quadrupole transition-electric field gradient and molecular structure (7N ¹⁴ , 5B ¹¹ , 17Cl ³⁶).	3	Chalk & Talk
4.4	Mossbauer spectroscopy - recoilless emission and resonance absorption.	3	E-Resources
4.5	Experimental method, isomeric shift and electric quadrupole splitting in Fe ⁵⁷ .	3	Chalk & Talk
	UNIT – V		
5.1	Introduction- Types of nano materials- Nanoparticles, nanotubes-Carbon nanotubes: SWCNT and MWCNT, nanowires.	3	E-Resources

5.2	Nanoribbons, nanorods, nano composites. Preparation methods-Chemical vapour deposition	3	Chalk & Talk
5.3	Sol-Gel method, Electrodeposition method, Ball milling method, Chemical reduction method, spin coating technique, Solvothernal synthesis, Colloidal method, Co-precipitation method, Flame spray synthesis (Arc Plasma).	3	Discussion
5.4	Preparation of metal oxide nanoparticles. Characterization Techniques like SEM, TEM, AFM.	3	E-Resources
5.5	XRD, UV-DRS, B.E.T analysis, DLS, PL - Applications of Nanoparticles.	3	Discussion
	Total	75	

Course Designer Ms. A. Mumthaj

Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC3P	Inorganic Chemistry Practical	Core -XII	150	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented	\checkmark	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	\checkmark

This lab course enables the students to acquire laboratory skill on quantitative estimation of inorganic metal ions and qualitative analysis of inorganic cations present in the mixture of salts.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	C01	Estimate the amount of metal ions such as like Zinc, Magnesium and Copper present in the given solution by EDTA volumetric method.	K1,K2,K3,K4,K5
	CO2	Calculate the amount of Nickel ions present in the given solution by direct and indirect EDTA volumetric methods.	K1,K2,K3,K4,K5
	CO3	Analyse the familiar cations present in the given mixture of salts.	K1,K2,K3,K4
	CO4	Analyse the less familiar cations present in the given salt mixture	K1,K2,K3,K4
	CO5	Acquire the laboratory skill of quantitative as well as qualitative analysis of metal ions.	K1,K2,K3,K4,K5
K	1-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

	P01	P02	P03	P04	P05
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	2	3	3	3	3
CO4	2	3	3	3	3
CO5	3	3	3	3	2

Mapping of CO with PSO

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	2	3
CO2	3	3	3	2	3
CO3	2	3	3	2	3
CO4	2	3	3	2	3
CO5	3	3	3	3	2
l-Low		2-Me	dium	1	3-Strong

Syllabus

I. COMPLEXOMETRIC TITRATIONS WITH EDTA

1. Estimation of ZINC

2. Estimation of MAGNESIUM

3. Estimation of COPPER

4. Estimation of NICKEL a) By Direct Method b) By Indirect Method

II. SEMI MICRO ANALYSIS

Semi micro analysis of samples containing two Familiar Cations and two Less Familiar Cations. – Maximum of Five samples.

Reference Books

J Mendham, RC Denney, JD Barnes, MJK Thomas, *Vogel's A Text Book of Quantitative Chemical Analysis*, Pearson Education in South Asia, Panchsheel Park, New Delhi, 2008, Sixth Edition.

Course Designer Ms. A. Nihath Nazleen Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC41	Organic Chemistry- IV	Core -XIII	75	4

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented	✓	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	✓

The course explains the of heterocyclic compounds, terpenoids, alkaloids and antibiotics. It gives in-depth knowledge on the retro and asymmetric synthesis and molecular rearrangement reactions.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Outline the chemistry of nitrogen and oxygen containing heterocyclic compounds and natural products.	K1,K2
CO2	Apply their knowledge on isolation, biological activity and structural studies of selective terpenoids and alkaloids.	K1,K2,K3
CO3	Outline synthetic route for complex organic molecules which find medicinal, industries of commercial importance.	K1,K2
CO4	Evaluate various methods to synthesize optically active compounds	K1,K2,K3,K4,K5
C05	Apply their knowledge in writing the mechanism of molecular rearrangement reaction.	K1,K2,K3

K1-Knowledge K2-Understand K3-Apply K4- Analyse K5- Evaluate

	P01	P02	PO3	P04	P05
C01	3	3	1	2	2
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	2	3	3	3
C05	3	1	2	1	3

	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	2	3
CO2	3	3	3	3	3
CO3	3	2	2	3	3
CO4	3	2	2	3	3
C05	3	3	3	1	3
I-Low 2-Medium			3-Strong		

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

3-Strong

15 Hours

15 Hours

15 Hours

15 Hours

Chemistry of Heterocyclic Compounds: Heterocyclics - Nomenclature -Compounds containing two hetero atoms: Synthesis and reactivity of pyrazole, imidazole, oxazole, thiazole. diazines: the chemistry of pyridazine, pyrimidine and pyrazine - Comparison of basicity of diazines. Introduction to anthrocyanins and flavonoids.

UNIT II

Chemistry of Terpenoids and Alkaloids: Chemistry of terpenoids: General methods of determining structure of terpenoids – apinene, Zingiberene, and Abietic acid. Chemistry of alkaloids: General methods of determining structure of alkaloids – Structure elucidation of (i) Morphine (ii) Reserpine. Antibiotics: Definition, Structural elucidation of penicillin, chloramphenicol.

UNIT III

Organic Synthesis-I (Retro-synthesis): Advanced Disconnection Approach - Importance of organic synthesis-Planning synthesis – Synthons and types – synthetic equivalents – latent functionality Guideliness for best disconnection approach, Reactions involving functional group interconversions - Reterosynthetic analysis - concept of umpolung - two group C-X disconnections and synthetic strategies 1,2-, 1,3-, 1,4-, 1,5- and 1.6- difunctionalised disconnection. Steroselective and stereospecific reactions-Chemoselectivity-Stereoselectivity- Regioselectivity.

UNIT IV

Advanced Organic Synthesis II (Asymmetric synthesis): Definition of enantiomeric, disatereomeric excess – analytical methods to determine ee and de - strategy and classification of methods of asymmetric synthesis -Chiral substrates - Chiral auxiliaries - Chiral reagents - Chiral catalysts. Chiral catalysts and chiral reagents: BINAP-ruthenium (II) Mc Murray_s reagent – Ti(i-PrO)₄, and K₂OS₂(OH)₄ – Sharpless asymmetric epoxidation, – Heck reactions – Suzuki Coupling – Sonogashira coupling.

UNIT V

Molecular Rearrangements: Classification – Nucleophilic, electrophilic, and radical – Mechanism of Favorski, BenzilBenzilic acid, Bayer-Villiger, Wagner-Meerwin rearrangement, Carbanionic rearrangements, Stevan_s rearrangement, Sommelet-Hauser, Cope, and Wesly-Moser rearrangement, Fries Rearrangement. Acid catalyzed rearrangement – Arndt-Eistert synthesis – carbon to nitrogen migration – Hofmann rearrangement, Curtius rearrangement, Lossen rearrangement, Schmidt and Beckmann rearrangement.

Text Books

Jerry March, *Advanced Organic Chemistry, Reaction mechanism and structure*, John Wiley and sons, New York, 1992, 4th Edition.

S. Warren, *Organic synthesis - The disconnection approach*, John Wiley & Sons, UK, 2004.

Cary and Sundberg, *Advanced Organic Chemistry, Part B, Reactions and Synthesis*, Plenum Press, 1990, 3rd Edition.

R. K. Mackei and D. M. Smith, *Guide Book to Organic synthesis*, ELBS, 1982.

I.L. Finar, *Organic Chemistry, Vol. II*, ELBS, New York, 2005, 5th Edition.

W. Caruthers, Some *Modern methods of organic synthesis*, Cambridge University.

C.H. Depuy and O.L. Chapman, *Molecular reactions and Photo Chemistry*, Tata MacGraw Hill, 1975, Eastern and Economic Edition.

Reference Books

Graham Solomons, *Organic Chemistry*, John Wiley and Sons INC, 1992, 5th Edition. Michael B. Smith, *Organic Synthesis*, McGraw Hill, 1994, International Edition.

Clayden, Greeve, Warren and Wothers, *Organic Chemistry*, OXFORD University Press, 2007.

A.J. Bellamy, *An introduction to conservation of orbital symmetry*, Longman group Limited, 1974.

H. O. House, *Modern synthetic reactions*, Cambridge University press, 1972, 3rd Edition.

W. Carruthers and I. Coldham, *Modern methods of organic synthesis*, Cambridge University Press, 2004, 4th Edition.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	lodule		Content Delivery	
No.	Горіс	Lectures	Methods	
	UNIT – I			
	Heterocyclics – Nomenclature -			
	Compounds containing two hetero atoms:			
1.1	Synthesis and reactivity of pyrazole,	7	Chalk & Talk	
	imidazole, oxazole, isoxazole, thiazole,			
	isothiazole.			
	Diazines: the chemistry of pyridazine,			
12	pyrimidine and pyrazine – Comparison of	8	E-Resources	
1.2	basicity of diazines - Chemistry of	0	L Resources	
	anthrocyanins and flavonoids.			
	UNIT – II			
	Chemistry of terpenoids: General methods			
2.1	of determining structure of terpenoids –	8	Discussion	
2.1	α -pinene, α -cadinene, Zingiberene, Abietic	U	Discussion	
	acid and Heliangine.			
	Chemistry of alkaloids: Alkaloids and			
	Drugs: General methods of determining		Chalk & Talk	
2.2	structure of alkaloids – Structure	7		
	elucidation of (i) Morphine (ii) Reserpine			
	(iii) Lysergic acid.			
	UNIT – III	r		
	Disconnection Approach: Importance of			
	organic synthesisPlanning synthesis,			
3.1	Synthons and types – synthetic	4	E-Resources	
011	equivalents – latent functionality -	•	L'Rébources	
	Guideliness for best disconnection			
	approach.			
	Reactions involving functional group			
3.2	interconversions – Reterosynthetic	4	Chalk & Talk	
	analysis, concept of umpolung.			
	Two group C-X disconnections and			
3.3	synthetic strategies 1,2-, 1,3-, 1,4-, 1,5-	4	Discussion	
	and 1,6- difunctionalised disconnection			

3.4	Steroselectiveandstereospecificreactions-Chemoselectivity-Stereoselectivity-Regioselectivity.	3	E-Resources
	UNIT – IV		
4.1	Asymmetric synthesis: Definition of enantiomeric, disatereomeric excess – analytical methods to determine ee and de – strategy	5	Discussion
4.2	Classification of methods of asymmetric synthesis – chiral substrates – Chiral auxiliaries – chiral reagents – chiral catalysts	5	E-Resources
4.3	Chiral catalysts and chiral reagents: BINAP-ruthenium (II) Mc Murray`s reagent – Ti(i-PrO) ₄ , and K ₂ Os ₂ (OH) ₄ – Sharpless asymmetric epoxidation, – Heck reactions – Suzuki Coupling – Sonogashira coupling.	5	Chalk & Talk
	UNIT – V		
5.1	Classification – Nucleophilic, electrophilic, and radical – Mechanism of Favorski, Benzil-Benzilic acid, Bayer-Villiger, Wagner-Meerwin rearrangement	5	E-Resources
5.2	Carbanionic rearrangements, Stevan_s rearrangement, Sommelet-Hauser, Cope, and Wesly-Moser rearrangement, Fries Rearrangement.	5	Chalk & Talk
5.3	Acid catalyzed rearrangement – Arndt- Eistert synthesis – carbon to nitrogen migration – Hofmann rearrangement, Curtius rearrangement, Lossen rearrangement, Schmidt and Beckmann rearrangement.	5	Discussion
	Total	75	

Course Designer Mr. G. Arivalagan Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC42	Inorganic Chemistry- IV	Core -XIV	75	4

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented		Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	

The course explains the synthesis, structure and reactivity of organometallic compounds and their catalytic applications, role of metal ion in biological systems and physical features of biochemistry.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
C01	Define the terms EAN, 18, 16-electron rule classify the organometallic compounds, structure and properties of organometallic compounds such as metallocenes, alkenes, alkynes and arene complexes.	K1, K2
CO2	Discover and evaluate the synthesis, structure and reactivity of organometallic compounds.	K1, K2,K3,K4, K5
CO3	Explain the structures and work functions of iron sulphur proteins, blue copper proteins and cytochrome.	K1,K2, K3
CO4	Classify the Carboxypeptidase A, carbonic anhydrase, elements in biological systems and metals used for diagnosis.	K1,K2, K4
CO5	Develop their knowledge in physical features of biochemistry.	K1, K2,K3

K1-Knowledge K2-Understand K3-Apply K4- Analyse K5- Evaluate

	P01	PO2	P03	P04	P05
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	2	3	2	3	2
C04	2	3	2	3	2
C05	2	3	1	2	1
1 Low		2 Ma	dimma	2 64	Nong

	PSO1	PSO2	PSO3	PSO4	PSO5		
C01	3	3	2	2	3		
CO2	3	3	3	3	2		
CO3	2	3	2	3	3		
CO4	2	2	2	2	2		
CO5	2	1	2	2	2		
1-Low		2-Me	dium		3-Strong		

Mapping of CO with PSO

Syllabus

UNIT I

15 Hours

Organometallic Chemistry – **I**: Stability of organo metallic compounds- β hydrogen elimination- the sixteen and eighteen electron rule. Synthesis – structure and bonding in metal carbonyls – isoelectronic and isolobal analogy- use of IR in the structural elucidation of carbonyl compounds-metal nitrosyls – dinitrogen complexes. π donors-Carboxylic ligands and complexes. Synthesis structure bonding and reactivity of carbenes, carbines, metallocenes and other aromatic cyclopolyenes – Ferrocene – bonding and structure – sigma, pi and hapto nomenclature. Arene complexes – olefin – acetylene and pi allyl complexes.

UNIT II

15 Hours

Organometallic Chemistry – II: Catalysis involving organometallic compounds –properties of metals and ligands in homogeneous catalysis – oxidative addition and reductive elimination – hydrogen abstraction – activation of small molecules by complexation-agnostic interaction-insertionalkyl migration-insertion and elimination-catalytic reactions-hydrogenation of olefins – Wilkinson's catalyst – hydroformylation –syngas-water gas shift reactions- oxidation of olefins – Wacker process – propylene polymerization - Olefin metathesis -Ziegler natta catalyst -cyclo oligomerisation of acetylene , butadiene- Reppe's catalyst . Mansanto's acetic acid synthesis-Fischer-Tropsch's synthesis of Synthetic gasoline.

UNIT III

15 Hours

Bioinorganic chemistry I: Porphyrin ring system – metalloporphyrins – synthetic oxygen carriers –cytochromes – structures and work functions in respiration –iron-sulphur proteins (non-heme iron protein) – Copper containing proteins – classification – blue copper proteins – structure of blue copper electron transferases – copper proteins as oxidases – cytochrome C oxidase – mechanistic studies of C oxidase – Hemocyanin.

Bioinorganic chemistry II: Carboxypeptidase A: structure, function – carbonic anhydrase: structure, function – inhibition and poisoning –in-vivo and in-vitro nitrogen fixation – essential and trace elements in biological systems –toxic effects of heavy metals (Pb, Cd, Hg and As) and detoxification – metals used for diagnosis- molecular mechanism of ion transport across the membrane – sodium and potassium ions pumps – chelate therapy – cis-platin.

UNIT V

15 Hours

Physico-Chemical Principles and Biological Reactions: Studies on biochemical equilibria: Buffer system of intracellular fluids – H_2CO_3/HCO_3^- , $HPO_4^{2-}/H_2PO_4^{--}$ Application of Henderson-Hasselbach equation; Ion channels – membrane and static potentials - Role of Na⁺/K⁺ ions in neural communications $-Na^+/K^+$ ion pump; allosterismand oxygen saturation curves for hameoglobin and myoglobin – derivation of Hill equation.

Text Books

Cotton F.A. and Wilkinson, G. *Advanced Inorganic Chemistry*, Wiley-Interscience publications, John Wiley & Sons, New York, 1998, V Edition.

Wahid U. Malik, G.D. Tuli and R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand & Co. Ltd., New Delhi, 2006.

Nakamoto, Kazuo, Paul J. McCarthy, *Spectroscopy and Structure of Metal Chelate Compounds*, John Wiley and Sons. Inc., New York, 1986, IV edition.

Drago, R. S. Van Nostrand and Reinhold, *Physical Methods in Chemistry*, 1976.

Purcell K.F. and Kotz J.C., *Inorganic chemistry*, Holt Saunders, Philadelphia, 1977.

Reference Books

Huheey, J. E., Ellen A. Keiter, Richard L. Keiter, **Inorganic chemistry**, pearson Education (Singapore) (P) Ltd., Delhi, 2004, IV Edition.

Wahid U. Malik, G.D. Tuli and R. D. Madan, **Selected Topics in Inorganic Chemistry**, S. Chand & Co.Ltd., New Delhi, 2006.

A.G. Sharpe, **Inorganic Chemistry**, Addition – Weskey Longman, UK, 2004, III Edition.

Gary L. Miessler and Donald A. Tarr, **Inorganic Chemistry**, Pearson Education, Inc., New Delhi, 2004, III Edition.

D. F. Shriver and P.W. Atkins, **Inorganic Chemistry**, Oxford University Press, London, 1999.

K. Hussain Reddy, **Bioinorganic Chemistry**, New Age International (P) Ltd., Delhi, 2005.

William W. Porterfield, **Inorganic Chemistry**, Elsevier, New Delhi, 2005, II Edition.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	odule Topic		Content Delivery
No.	Topic	Lectures	Methods
	UNIT – I		
1.1	Stability of organo metallic compounds- β hydrogen elimination.	2	Chalk & Talk
1.2	Synthesis – structure and bonding in metal carbonyls – isoelectronic and isolobal analogy. Sixteen and eighteen electron rule.	3	E-Resources
1.3	Use of IR in the structural elucidation of carbonyl compounds. Metal nitrosyls – dinitrogen complexes. π donors.	4	Discussion
1.4	Synthesis structure bonding and reactivity of carbenes, carbines, metallocenes and other aromatic cyclopolyenes	3	E-Resources
1.5	Ferrocene – bonding and structure – sigma, pi and hapto nomenclature. Arene complexes – olefin – acetylene and pi allyl complexes.	3	E-Resources
	UNIT – II		
2.1	Catalysis involving organometallic compounds – properties of metals and ligands in homogeneous catalysis.	3	E-Resources
2.2	Oxidative addition and reductive elimination – hydrogen. Abstraction. Activation of small molecules by complexation-agnostic interaction, Insertion-alkyl migration-insertion and eliminationcatalytic reactions.	3	Discussion
2.3	Hydrogenation of olefins – Wilkinson's catalyst – hydroformylation –syn-gas water gas shift reactionsoxidation of olefins – Wacker process.	3	Chalk & Talk
2.4	Propylene polymerization – Olefin metathesis - Ziegler natta catalyst -cyclo oligomerisation of acetylene , butadiene.	3	Chalk & Talk

2.5	Reppe's catalyst. Mansanto's acetic acid synthesis, Fischer- Troppe's synthesis of Synthetic gasoline.	3	E-Resources
	UNIT – III		
3.1	Porphyrin ring system metalloporphyrins –synthetic oxygen carriers –cytochromes.	4	E-Resources
3.2	Structures and work functions in respiration –iron-sulphur Proteins (non- heme iron protein)-Copper containing proteins – classification.	5	Chalk & Talk
3.3	Blue copper proteins-Structure of blue copper electron transferases – copper proteins as oxidases –cytochrome C oxidase – mechanistic studies of C oxidase – Hemocyanin.	6	Discussion
	UNIT – IV		
4.1	Carboxypeptidase A: structure, function – carbonic anhydrase – inhibition and poisoning.	3	Discussion
4.2	In-vivo and in-vitro nitrogen fixation – essential and trace elements in biological systems - metals used for diagnosis.	5	E-Resources
4.3	Metal ion toxicity and detoxification – molecular mechanism of ion transport across the membrane.	4	Chalk & Talk
4.4	Sodium and potassium ions pumps chelate therapy – cisplatin.	3	E-Resources
	UNIT –V		
5.1	Studies on biochemical equilibria:BuffersystemofintracellularfluidsH2CO3/HCO3-, HPO42-/H2PO4H2O4H2O4	6	Chalk & Talk
5.2	Application of Henderson - Hasselbach equation; Ion channels – membrane and static potentials - Role of Na ⁺ /K ⁺ ions in neural communications –Na ⁺ /K ⁺ ion pump.	5	E-Resources
5.3	Allosterism and oxygen saturation curves for hameoglobin and myoglobin – derivation of Hill equation.	4	Discussion
	Total	75	

Course Code	Course Title	Category	Total Hours	Credits
20PCHC43	Physical Chemistry-IV	Core -XV	75	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented		Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	\checkmark

The course enables the students to gain knowledge on theories and concepts of chemical kinetics, photochemistry, Radiation chemistry, surface chemistry and biophysical chemistry.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No		Course Outcome	Knowledge	
	NU.	course outcome	Level	
	CO1	Understand the fundamental concepts on kinetics and	K1,K2	
		reaction rate.		
	CO2	Develop knowledge on various theories of chemical	K1 K2 K2	
	02	kinetics.	N1,N2,N3	
	CU 3	Analyze the physical concepts of Photochemistry and	V1 V2 V2 VA	
	603	Radiation chemistry.	N1,N2,N3,N4	
	CO4	Make use of the kinetics and theories of surface	V1 V2 V2	
	LU4	chemistry.	N1,N2,N3	
	CO5	Explain the concepts of biophysical chemistry.	K1,K2,K3,K4,K5	
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate	

	P01	PO2	PO3	P04	PO5
C01	3	2	3	3	3
CO2	3	1	3	3	3
CO3	3	2	3	3	2
CO4	3	1	3	3	3
CO5	2	3	2	3	1
1-Low		2-Me	dium	3-St	rong

11 8					
	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	2	2	2
CO4	3	3	3	2	3
CO5	2	1	2	3	1
1-Low		2-Medium			3-Strong

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

15 Hours

Chemical Kinetics – I: Simple Collision theory- modification - Absolute reaction rate theory (ARRT) - Statistical and thermodynamics formulation - Comparison of ARRT with collision theory - Significance of entropy of activation- Relation between Δ H and Ea- Transmission coefficient; ARRT of termolecular reactions – Unimolecular reactions – Lindemann, Hinshelwood, RRKM and Slater treatments – solution kinetics – ARRT of reaction in solution – Influence of ionic strength on the rates of ionic reactions (salt effects).

UNIT II

15 Hours

Chemical Kinetics – II: Fast reactions-flow and relaxation techniques, Temperature Jump and pressure jump method - complex reactions – opposing, consecutive and parallel reactions; Chain reaction – kinetics and general characteristic – H₂-Br₂ reaction, Rice – Herzfeld mechanism for decomposition of acetaldehyde & ethane – Branched chain reaction – study of H₂-O₂ explosive reaction - homogeneous catalysis – acid, base catalysis.

UNIT III

15 Hours

Photochemistry: Photo physical processes in electronically excited molecules - Fluorescence, Phosphorescence and other deactivating processes. Stern-Volmer equation and its applications- electronically energy transfer mechanisms –photosensitization and chemiluminescence. Experimental techniques in photochemistry - light sourceschemical actinometry.

Radiation chemistry: Source of high energy - Interaction of high energy radiation with matterRadiolysis of water - definition of G value - mode of reactions of hydrated electronsOH⁻ and H⁺. Experimental techniques of radiation chemistry - Dosimetry.

UNIT IV

Surface Chemistry: Physisorption and Chemisorption - adsorption isotherm - derivation of Langmuir and Freundlich, derivation of B.E.T equation of multilayer adsorption – application of BET equation to surface area determination. derivation of Gibbs adsorption isotherm. Heterogeneous catalysis and their kinetics - chemical reactions on solid surfaces - Mechanism & Kinetics of unimolecular and bimolecular surface reactions - Langmuir - Hinshelwood, Langmuir - Ridel mechanism, ARRT of surface reactions; Basic concepts of Micelles and Reverse Micelles.

UNIT V

15 Hours non-equilibrium

Biophysical Chemistry: Basic concepts of thermodynamics- Onsager reciprocal relationship- Its application to biological systems- High energy metabolites- ATP and its role in bioenergetics- transfer of potential and coupled reaction- Biological energy conversion in catabolism and anabolism- role of singlet oxygen in biology-Biophysical applications of Mossbauer effect- NMR imaging- Applications of spin labeling in membrane research- Molecular recognition – An introduction to supramolecular chemistry and photochemistry.

Text Books

Glasstone S., *Textbook of Physical chemistry*, McMillan, Alasca, 1974, III Edition. Daniels F., Alberty, R.A., *Physical Chemistry*, John willey and sons, UK, 1974. Moore, W.I., *Physical Chemistry*, Orient Longman, UK, 1972, 5th Edition. Lehniger A.L., *Principles of BioChemistry*, 2006, 4th Edition.

Reference Books

Laidler K.J., *Chemical Kinetics*, Tata McGraw Hill, UK, 2005, II Edition.

Frost A.A., Pearson R.G., Kinetics and Mechanism, New York, 1990.

Wilkinson F., Chemical Kinetics and Reaction Mechanism, Var Nostrard ReinholdCo., New York, 2000.

Rohatgi-Mukherjee K.K., Fundamentals of Photochemistry, Wiley Eastern Ltd., New York, 1999, Revised edition.

Adamson A.M., *Physical Chemistry of Surfaces*, John Willey, UK., 2002, V Edition. Laider, K.S., Chemical kinetics, TMH, New York, 2005, III Edition.

Raymond Chang, *Physical Chemistry with application to biochemical system*, Mc Millan Publishing Company. Inc., New Delhi, 2002.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonic	No. of	Content Delivery				
No.	Торіс	Lectures	Methods				
UNIT – I							
1.1	Simple Collision theory- modification - Absolute reaction rate theory (ARRT) - Statistical and thermodynamics formulation.	4	Chalk & Talk				
1.2	Comparison of ARRT with collision theory - Significance of entropy of activation- Relation between ΔH and Ea- Transmission coefficient.	4	E-Resources				
1.3	ARRT of termolecular reactions – Unimolecular reactions - Lindemann, Hinshelwood, RRKM and Slater treatments – solution kinetics.	4	Discussion				
1.4	ARRT of reaction in solution – Influence of ionic strength on the rates of ionic reactions (salt effects).	3	E-Resources				
UNIT – II							
2.1	Fast reactions-flow and relaxation techniques.	2	E-Resources				
2.2	Temperature Jump and pressure jump method - complex reactions – opposing, consecutive and parallel reactions.	3	Discussion				
2.3	Chain reaction – kinetics and general characteristic – H ₂ -Br ₂ reaction, Rice – Herzfeld mechanism for decomposition of acetaldehyde & ethane.	5	Chalk & Talk				
2.4	Branched chain reaction – study of H ₂ -O ₂ explosive reaction - homogeneous catalysis – acid, base catalysis.	5	Chalk & Talk				
	UNIT – III						
-----	--	---	--------------				
3.1	Photo physical processes in electronically excited molecules - Fluorescence, Phosphorescence and other deactivating processes.	3	E-Resources				
3.2	Stern-Volmer equation and its applications - electronically energy transfer mechanisms –photosensitization and chemiluminescence.	4	Chalk & Talk				
3.3	Experimental techniques in photochemistry - light sourceschemical actinometry.	2	Discussion				
3.4	Source of high energy - Interaction of high energy radiation with matterRadiolysis of water - definition of G value.	3	Chalk & Talk				
3.5	Mode of reactions of hydrated electronsOH- and H+. Experimental techniques of radiation chemistry - Dosimetry.	3	E-Resources				
	UNIT – IV						
4.1	Physisorption and Chemisorption – adsorption isotherm – derivation of Langmuir and Freundlich.	3	Discussion				
4.2	derivation of B.E.T equation of multilayer adsorption – application of BET equation to surface area determination, derivation of Gibbs adsorption isotherm.	4	Chalk & Talk				
4.3	Heterogeneous catalysis and their kinetics – chemical reactions on solid surfaces - Mechanism & Kinetics of unimolecular and bimolecular surface reactions.	4	Chalk & Talk				
4.4	Langmuir – Hinshelwood, Langmuir – Ridel mechanism, ARRT of surface reactions; Basic concepts of Micelles and Reverse Micelles.	4	E-Resources				

	UNIT –V		
5.1	Basic concepts of non-equilibrium thermodynamics- Onsager reciprocal relationship- Its application to biological systems.	3	Chalk & Talk
5.2	High energy metabolites- ATP and its role in bioenergetics- transfer of potential and coupled reaction.	3	Chalk & Talk
5.3	Biological energy conversion in catabolism and anabolism- role of singlet oxygen in biology.	2	Discussion
5.4	Biophysical applications of Mossbauer effect- NMR imaging- Applications of spin labeling in membrane research-, mechanism and application - Dendrimer.	4	E-Resources
5.5	Molecular recognition – An introduction to supramolecular chemistry and photochemistry.	3	E-Resources
	Total	75	

Course Designer Ms. A. Mumthaj Assistant Professor of Chemistry

Course Code	Course Title	Category	Total Hours	Credits
20PCHC4P	Project Viva-Voce	Core -XVI	150	4

Nature of Course		Course R	elevance	
Knowledge Oriented	\checkmark	Local		
Skill Oriented	✓	Regional		
Employability Oriented	✓	National		
Entrepreneurship Oriented		Global		✓

Preamble

The research in chemistry requires the knowledge on laboratory synthesis, analysis, analytical data interpretation and able to communicate the scientific results both in oral, written and electronic format to both chemists and non-chemists. This course fulfills the said requirements.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Develop skills on preparation of novel materials through new synthetic routes.	K1, K2
CO2	Analyze the materials using various analytical techniques.	K1, K2,K3
CO3	Interpret the analytical data and able to correlate theoretical and experimental results.	K1, K2,K3,K4
CO4	Defend the laboratory scientific results both in oral, written and electronic format to both chemists and non- chemists.	K1, K2,K3,K4
CO5	Discuss research methodologies along with literature survey.	K1, K2
K1-Kr	nowledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
C01	3	2	3	2	3
CO2	3	3	3	2	3
CO3	3	3	3	2	3
C04	3	2	3	3	3
CO5	3	1	2	3	3
1-Low		2-Me	dium	3-St	rong

Mapping of CO with PSO

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	2	1
CO2	3	3	3	2	2
CO3	3	3	2	2	1
C04	3	2	3	3	2
C05	3	2	3	1	1
1-Low		2-Me	dium	3-St	rong

Marks

External Examiner: Viva:	20
External Examiner: Evaluation of Project:	40
Internal Examiner: Evaluation of Project:	40
Total:	100
	•

Course Code	Course Title	Category	Total Hours	Credits
20PCHE41	Polymer Chemistry	Elective -III	75	4

ature of Course		Course Relevance
Knowledge Oriented	\checkmark	Local
Skill Oriented		Regional
Employability Oriented	\checkmark	National
Entrepreneurship Oriented		Global

Preamble

The course enables the students to gain knowledge on types of polymers, polymerization techniques and polymer processing.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
C01	Outline the fundamentals of classification of polymers and chemistry of polymerization.	K1,K2
CO2	Develop knowledge on various types of individual polymers.	K1,K2,K3
CO3	Analyze the properties of polymers.	K1,K2,K3,K4
CO4	Make use of the polymerization techniques and degradation of polymers.	K1,K2,K3
CO5	Explain the basics and applications polymer processing.	K1,K2,K3,K4,K5
X1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	3	2	2	2
CO2	3	3	2	2	2
CO3	3	3	2	1	2
C04	3	3	3	3	2
C05	3	3	3	3	2
1-Low		2-Me	dium	3-St	rong

11 0					
	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	2	2	3	3	2
CO3	2	2	3	3	2
CO4	2	3	3	3	2
CO5	3	3	3	3	2
l-Low	2-Medium				3-Strong

Mapping of CO with PSO

1-Low

Syllabus

UNIT I

Classification of polymers and chemistry of polymerization: Classification of polymers - linear polymers, non-linear polymers, branched polymers, cross linked polymers, homo chains, hetero chains, homo polymers, co polymers, block polymers and graft polymers. Chemistry of polymerization - Types of polymerization-mechanism-chain, growth, free radical, ionic, co-ordination, ring opening, metathetical, group transfer, polyaddition and polycondensation polymerizations.

UNIT II

15 Hours

15 Hours

methods Individual Monomers required polymers: general of preparation, repeat Units and uses of the following polymers and resinspolyethylene, polystyrene, polyacrylonitrile, polymethymethacrylate, PVC, polytetrafluoroethylene, polyisoprenes, polybutadienes and polychloroprene, polyesters. Polycarbonates, polyimides, polyamides (Kevlar), polyurethanes, polyethyleneglycols, phenol-formaldehyde, ureaformaldehyde, melamineformaldehyde and epoxy resins-silicone polymers. **15 Hours**

UNIT III

Properties of polymers: Configuration of polymer chain-geometrical structure-syndiotatic, isotatic and atatic polymers. Glass transition temperature - Definition-factors affecting glass transition temperaturerelationships between glass transition temperature and (a) molecular weight, (b) melting point and (c) plasticizer-importance of glass transition temperature - heat distortion temperature. Molecular weight and size of polymers - Number average, weight average, sedimentation and viscosity molecular weights-molecular weights and degree average of polymerization-poly dispersity-molecular weight distribution in polymerssize of polymer molecules.

UNIT IV

Polymerization techniques, degradation and uses of polymers: Polymerization techniques - Bulk, solution, suspension, emulsion, melt condensation and interfacial polycondensation polymerizations. Degradation- Types of degradation - thermal, mechanical, ultrasonic and photodegradation photostabilizers - oxidative degradation – antioxidants – hydrolytic degradation. Uses of polymers - Electronics and biomedicine.

UNIT V

15 Hours

Polymer processing: Plastics (thermo and thermosetting), elastomers, fibres, compounding, plasticisers, colorants, flame retardants. Compression and injection mouldings - film extrusion and calendaring - die casting and rotational casting – thermofoaming - reinforcing.

Text Books

B.K. Sharma, *Polymer Chemistry*, Goel Publishing House, Meerut, 1989.
P.J. Flory, *Principles of Polymer Chemistry*, Cornell Univ. press, Ithaca, 1953.
F.W. Billmeyer, *Text Book of Poymer Science*, John Wiley and sons, New York, 1984, 3rd Edition.

Reference Books

V.R. Gowariker, N.V. Viswanathan, Jayadev Sreedher, *Polymer Science*, Wiley Eastern Ltd., New Delhi 1986.

G. Odian, *Principles of Polymerisation*, John Wiley and sons, New York, 1981, 2nd Edition.

D.W. van Krevelen, P.J. Hoftyrager, *Properties of Polymers*, Elsevier, New York, 1976.

Harry R. Allcock, F. W. Lampe, J.E. Mark, *Contemporary Polymer Chemistry*, Pearson, Prentice Hall, New Delhi, 2005, 3rd Edition.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module		No. of	Content Delivery			
No.	Topic	Lectures	Methods			
	UNIT – I					
	Classification of polymers: linear					
1.1	polymers, non-linear polymers, branched	4	Chalk & Talk			
	polymers, cross linked polymers.					
	Homo chains, hetero chains, homo					
1.2	polymers, co polymers, block polymers	4	E-Resources			
	and graft polymers.					
	Chemistry of polymerization: Types of					
1.3	polymerization-mechanism-chain,growth,	4	Discussion			
	free radical, ionic, co-ordination, ring					
	opening polymerization.					
1.4	Metathetical, group transfer, polyaddition	3	E-Resources			
	and polycondensation polymerizations.					
	Monomers required general methods of					
	preparation, repeat units and uses of the					
2.1	following polymers and resins-	5	E-Resources			
	polyethylene, polystyrene,					
	polyacrylonitrile, polymethymethacrylate,					
	PVC.					
2.2	Polytetrafluoroetnylene, polyisoprenes,	2	Disquasion			
2.2	polybuladienes and polychloroprene,	5	Discussion			
	Polycarhonatos polyimidos polyamidos					
22	(Kowlar)	2	Chally & Tally			
2.3	Polyethyleneglycols	5	Chaik & Taik			
	Phenolformaldehyde urea-formaldehyde					
24	melamineformaldehyde and enoxy resins-	4	E-Resources			
2.1	silicone polymers	1	L Resources			
	UNIT – III					
	Configuration of polymer chain					
3.1	geometrical structure syndiotatic, isotatic	3	E-Resources			
0.12	and atatic polymers.	Ū.				
	Glass transition temperature: Definition-					
3.2	factors affecting glass transition	2	E-Resources			
	temperature					
L		1				

3.3	Relationships between glass transition temperature and (a) molecular weight, (b) melting point and (c) plasticizer.	2	E-Resources
3.4	Importanceofglasstransitiontemperature-heatdistortiontemperature.	2	Discussion
3.5	Molecular weight and size of polymers:Numberaverage,weightaverage,sedimentation and viscosity.	3	Chalk & Talk
3.6	Average molecular weights-molecular weights and degree of polymerization- poly dispersity-molecular weight distribution in polymers-size of polymer molecules.	3	E-Resources
	UNIT – IV		
4.1	Polymerization techniques: Bulk, solution, suspension, emulsion, melt condensation and interfacial polycondensation polymerizations.	5	Discussion
4.2	Degradation: Types of degradation - thermal, mechanical, ultrasonic and photodegradation.	4	E-Resources
4.3	Photostabilizers - oxidative degradation – antioxidants - hydrolytic degradation	4	Chalk & Talk
4.4	Uses of polymers: Electronics and biomedicine.	2	E-Resources
	UNIT –V		
5.1	Plastics (thermo and thermosetting), elastomers, fibres, compounding.	4	Chalk & Talk
5.2	Plasticisers, colorants, flame retardants.	3	Chalk & Talk
5.3	Compression and injection mouldings - film extrusion and calendaring.	4	Discussion
5.4	Die casting and rotational casting - thermofoaming-reinforcing.	4	E-Resources
	Total	75	

Course Code	Course Title	Category	Total Hours	Credits
20PCHE42	Conducting Polymers	Elective -III	75	4

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented		Regional	
Employability Oriented	✓	National	
Entrepreneurship Oriented		Global	\checkmark

Preamble

The course enables the students to understand basic concepts and synthetic methods, electrochemical synthesis, semiconducting and metallic polymers, doping and catalytic conducting polymers.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	C01	Summarise the basic concepts and synthetic methods of polymers.	K1,K2
	CO2	Analyze the electrochemical synthesis of polymers.	K1,K2,K3,K4
	CO3	Apply the concepts of semiconducting and metallic polymers.	K1,K2,K3
	CO4	Interpret the change in electronic properties of polymer by doping.	K1,K2,K3,K4K5
	CO5	Apply the concepts of conducting polymers in catalysis.	K1,K2,K3
K	1-Know	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
C01	3	3	2	1	2
CO2	3	3	3	3	2
CO3	3	3	3	1	2
CO4	3	3	3	1	2
C05	3	3	3	3	2
1-Low		2-Me	dium	3-St	rong

11 8					
	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	2	1
CO2	3	3	3	2	1
CO3	2	3	3	2	1
C04	2	3	3	2	1
CO5	2	2	3	2	1
1-Low		2-Me	dium	3-St	rong

Syllabus

UNIT I

Mapping of CO with PSO

15 Hours

15 Hours

Basic Concepts and Synthetic methods: Basics of conducting polymers – Organic conjugated unsaturated hydrocarbons - Chemical Synthesis of conducting polymers – Other synthetic methods.

UNIT II

Electrochemical Synthesis: Electrochemical synthesis of conducting polymers – monomers, electrolytic condition, electrodes and mechanism; Electrochemical synthesis of derivatives of poly pyrrole, polythiophene, polyazulene, polycarbazole, polyindole, polyaniline and polyphenylene.

Semiconducting and Metallic Polymers: Structural basis for semiconducting and metallic polymers – introduction; Organic meta polymers - Synthetic route, isomers and electronic structure (polymers like polyacetylene, poly(p-phenylene), polypyrrole, polythiophene, etc.,).

UNIT IV

Doping: Electrochemical doping; deadline to the development of conducting polymers; role of reduction and oxidation potential in doping; polyacetylene as electrode materials.

UNIT V

15 Hours

Catalytic Conducting Polymers: Catalytic properties of conducting polymers; catalysis of electron donor-acceptor complexes; electrocatalysis by semiconducting polymers.

Text Books

Terje A. Skotheim, Ronald L. Elsenbaumer, John R. Reynolds, *Handbook of conducting Polymers*, Marcel Dekkar, 1995, Second Edition.

Raymond B Seymour, *New Concepts in Polymer Science*, Polymeric Composites, VSP, 1990.

UNIT III Se

15 Hours

15 Hours

Reference Books

Hari Singh Nalwa (Edn), *Handbook of Organic Conductive Molecules and Polymers*, Wiley, 1997.

Jean-Pierre Farges, *Organic Conductors*, Marcel Dekkar, 1994.

David B Cotts, Z Reyes, *Electrically Conductive Organic Polymers for Advanced Applications*, William Andrew Inc, 1987.

Larry Rupprecht, *Conductive Polymers and Plastics*, William Andrew Inc, 1999. Wallace Gordon, Gordon G Wallace, Geoffrey M Spinks, *Conductive Electroactive Polymers*, CRC Press, 2002.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonic	No. of	Content Delivery
No.	Торіс	Lectures	Methods
	UNIT – I		
1.1	Basics of conducting polymers - Organic – conjugated unsaturated hydrocarbons.	6	Chalk & Talk
1.2	Chemical Synthesis of conducting polymers – Other synthetic methods.	9	E-Resources
	UNIT – II		
2.1	Electrochemical synthesis of conducting polymers – monomers, electrolytic condition, electrodes and mechanism.	6	Chalk & Talk
2.2	Electrochemical synthesis of derivatives of polypyrrole, polythiophene, polyazulene.	5	Discussion
2.3	Polycarbazole, polyindole, polyaniline and polyphenylene.	4	E-Resources
	UNIT – III		
3.1	Structural basis for semiconducting and metallic polymers – introduction.	6	Discussion
3.2	Organic meta polymers - Synthetic route, isomers and electronic structure (polymers like polyacetylene, poly(p- phenylene), polypyrrole, polythiophene, etc.,).	9	E-Resources

UNIT – IV						
4.1	Electrochemical doping; deadline to the development of conducting polymers.	5	E-Resources			
4.2	Role of reduction and oxidation potential in doping.	5	Discussion			
4.3	Polyacetylene as electrode materials.	5	Chalk & Talk			
	UNIT –V					
5.1	Catalytic properties of conducting polymers.	5	Discussion			
5.2	Catalysis of electron donor-acceptor complexes	5	Chalk & Talk			
5.3	Electrocatalysis by semiconducting polymers.	5	E-Resources			
	Total	75				

Course Designer Ms. M. Rekha

Assistant Professor of Chemistry