

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Uthamapalayam, Theni District. Pin Code: 625 533.

DEPARTMENT OF MATHEMATICS

MASTER OF SCIENCE – MATHEMATICS

SYLLABUS

Choice Based Credit System – CBCS

(As per TANSCHE/MKU Guidelines)

with

Outcome Based Education (OBE)

(Academic Year 2020 - 2021 onwards)

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Uthamapalayam, Theni District. Pin Code: 625 533.

Name of the Programme: M.Sc. Mathematics

Choice Based Credit System (CBCS) (As per TANSCHE/MKU Guidelines)

with Outcome Based Education (OBE)

(with effect from the Academic Year 2020 – 2021)

College Vision and Mission

Vision

Our vision is to provide the best type of higher education to all, especially to students hailing from minority Muslim community, rural agricultural families and other deprived, under privileged sections of the society, inculcating the sense of social responsibility in them. Our college is committed to produce talented, duty-bound citizens to take up the challenges of the changing times.

Mission

Our mission is to impart and inculcate social values, spirit of service and religious tolerance as envisioned by our beloved Founder President Hajee Karutha Rowther.

The Vision beckons the Mission continues forever.

Programme Educational Objectives (PEO)

Our graduates will be progressive, efficient, value based, academically excellent, creative, collaborative, empowered and globally competent literates with the skills required for societal change.

They will demonstrate

	Comprehensive knowledge and expertise, employability, the acumen of
PEO1	creative and critical thinking, the spirit of enquiry and professional attitude
	required for a successful career
	Accountability, linguistic competence and communication skills in the work
FLU2	environment and beyond
DEU3	Perseverance, effective collaboration, team spirit, leadership and problem
FLUJ	solving skills
	Keen sense of civility, professional ethics, receptivity and moral
FLU4	righteousness
PF05	Commitment to address social and environmental threats and to act as
FE05	responsible service-minded, duty-bound global citizens

Department Vision and Mission

Vision

Department of Mathematics will promote and support a comprehensive, innovative and dynamic learning environment that meets the changing needs of a diverse global students population prepare the young minds for the rapidly changing mathematical techniques.

Mission

The mission of the mathematics degree program is to equip students with analytic and problem solving skill for career and graduate work classes develop student abilities and aptitudes to apply mathematical methods and ideas not only to problems in mathematics and related field such as the science, computer science, statistics but also to virtually any area of inquiry students learn to communicate ideas effectively and they are encouraged to develop intellectually and to become involved with professional origination. The department cooperates fully with the school of education in meeting its mission for candidates for a degree in education with mathematics.

Programme Outcomes (PO)

On the successful completion of M. Sc., Mathematics programme, the students will be able to

Acquire Knowledge in recent developments in various branches of mathematics
and participate in conferences/seminars/workshops and thus pursue research.
Develop problem solving skills and apply them independently to problems in
pure and applied mathematics
Sharper their analytic thinking .logical deductions and rigor in reasoning and
competent to obtain employment in various sectors.
Competency to meet global challengers through critical, rational, analytical and
logical thinking
Apply mathematical methodologies to open-ended real-world situations.

Program Specific Outcomes (PSO)

A graduate of M. Sc. Mathematics after two years will

PSO1	Communicate Mathematics effectively using various instructional
F301	strategies.
DC0.2	Utilize skills to write the proof of Mathematical Statements in a Suitable
F302	manner and solve theoretical applied problems
	Acquire computation, Programming and software skill to get empowered
F303	With employability and entrepreneurial skills.
	Develop confidence to defend the various level of competitive examination
F304	and get opportunities for personal and career development.
	Acquire knowledge of the emerging environmental challenges and provide
PSO5	the possible contribution in sustainable development that integrates
	Environment, Economy, Society and the Nation.

Programme Scheme Eligibility

A candidate who has passed B.Sc., Mathematics as the Major subject with Physics Ancillary is eligible for the Master of Science – Physics Degree. Duration of the Course: M.Sc., Mathematics – 2 years (4 Semesters). Medium of instruction: English.

For Programme Completion

A Candidate shall complete:

- Part III Core papers in semesters I, II, III and IV respectively
- Part III Elective papers in semesters I, II, III and IV respectively
- Part IV Non- Major Elective papers in semester III

Scheme of Examinations under Choice Based Credit System

Term End Examinations (TEE)- 75 MarksContinuous Internal Assessment Examinations (CIAE)- 25 MarksTotal- 100 Marks

Pattern of Continuous Internal Assessment Examinations (CIAE)

Average of Two Internal Tests (each 20 marks)	- 20 Marks
Seminar / Quiz / Assignment	- 05 Marks
Total	- 25 Marks

Pattern of Term End Examinations (Max. Marks: 75 / Time: 3 Hours) External Examinations Question Paper Pattern

Section – A (10 X 1 = 10 Marks) Answer ALL questions.

- Questions 1 10
- Two questions from each unit
- Multiple choice questions and each question carries Four choices

Section – B (5 X 7 = 35 Marks)

Answer ALL questions choosing either A or B.

- Questions 11 15
- Two questions from each unit (either.... or.... type)
- Descriptive Type

Section – C (3 X 10 = 30 Marks)

Answer any THREE out of five questions.

- Questions 16 20
- One question from each unit
- Descriptive Type

Passing Marks

Minimum 34 for External Exam Eligibility for the degree – passing minimum is **50%**

Practical Examination

Internal – 40 marks External – 60 marks Total – 100 marks Passing minimum is **40%**

Weightage

Waightaga for Bloom's Tayonomy	Porcontago	Marks		
weightage for bloom's raxonomy	reitentage	CIAE	TEE	
Knowledge (Remembering) – K1	10	2	7	
Understanding – K2	10	3	8	
Applying – K3	20	5	15	
Analyzing – K4	20	5	15	
Evaluating – K5	40	10	30	
Gross Total	100	25	75	

Assessment

Distribution of questions and marks for Continuous Internal Assessment Examinations

Bloom's Taxonomy	Section A	Section B	Section C	Total
Knowledge(K1)	3 (3)	1 (a or b) (4)		
Understanding(K2)	3 (3)	1 (a or b) (4)		40 Marks
Apply(K3)	1 (1)	1 (a or b) (4)	1 (8)	
Analyzing (K4)	1 (1)	1 (a or b) (4)	1 (8)	
CIA Examinations con	40/2 = 20			
Evaluating (K5)	10/2 = 5			

Bloom's Taxonomy	Section A	Section B	Section C	Total
Knowledge(K1)	7 (7)			
Understanding(K2)	1 (1)	1 (a or b) (7)		
Apply(K3)	1 (1)	2 (a or b) (14)		Total 75 Marks
Analyzing (K4)	1 (1)	2 (a or b) (14)		
Evaluating (K5)			3 out of 5 (30)	

Note: Figures in parenthesis are Marks

Course	Course	Course Title	Course Title Hrs CIAE TEE		CIAE TEE		Credits		
Category	Code					Marks			
		Semester – I							
	Part – III (OBE)								
Core – I	20PMAC11 Groups & Rings 6 25 75 100					5			
Core – II	20PMAC12	Real Analysis	6	25	75	100	4		
Core – III	20PMAC13	Differential Equations	6	25	75	100	4		
Core – IV	20PMAC14	Graph Theory	6	25	75	100	5		
Elective - I 20PMAE11 Mechanic		Mechanics	6	25	75	100	F		
		Numerical Analysis	0	25			Э		
Total 30 500 23									
Semester – II									
		Part – III (OBE)							
Core – V	20PMAC21	Linear Algebra	6	25	75	100	4		
Core – VI	20PMAC22	Complex Analysis	6	25	75	100	5		
Core – VII	20PMAC23	Differential Geometry	6	25	75	100	4		
Core – VIII	20PMAC24	Mathematical Statistics	Mathematical Statistics62575		100	5			
Floctivo - U	20PMAE21	Combinatorial Mathematics	6	25	75	100	5		
Elective - II	20PMAE22	Fuzzy sets & Logics		0 23	,,,,	100	J		
		Total	30			500	23		

Details of Course Category, Code, Credits & Title

Course	Course	Course Title	Hrs	CIAE	TEE	Max.	Credits	
Category	Loue	Semester – III				Marks		
	Part – III (OBE)							
Core – IX	20PMAC31	Field Theory & Lattices	7	25	75	100	4	
Core – X	20PMAC32	Measure Theory	7	25	75	100	4	
Core – XI	20PMAC33	Mathematical Methods	7	25	75	100	4	
	20PMAE31	Number Theory	6		76	100		
Elective -III	20PMAE32	Cryptography	6	25	/5	100	4	
		Part – IV	<u> </u>		<u> </u>			
NME	20PMAN31	Mathematics for Competitive Examinations	3	25 75		100	3	
	I	Total	30		1	500	19	
Semester – IV								
	1	Part - III (OBE)	Γ		I			
Core – XII	20PMAC41	Topology	6	25	75	100	5	
Core – XIII	20PMAC42	Functional Analysis	6	25	75	100	5	
Core – XIV	20PMAC43	Optimization Techniques	6	25	75	100	5	
Core – XV	20PMAC44	Project	7	25	75	100	5	
Elective W	20PMAE41	Fluid Dynamics	F	25		100	F	
Elective - IV	20PMAE42	Modern Applied Algebra 5 2		25	75	100	Э	
		Total	30			500	25	
		Grand Total	120			2000	90	

Course Code	Course Title	Category	Total Hours	Credits
20PMAC11	Groups and Rings	Core - I	90	5

Nature of Course		Course Relevance	
Knowledge Oriented 🖌		Local	
Skill Oriented 🗸		Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	✓

The course demonstrates the Sylow subgroups, solvability of groups and the structure theorem for finite abelian groups. The chain conditions in rings are elaborately discussed.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No	Course Outcome	Knowledge
	INU.	course outcome	Level
	CO1	Find the number of subgroups in a group.	K1,K2,K3,K4
	CO2	Demonstrate and analyze the concepts of solvability of	K1 K2 K2 KA
		Group	N1,N2,N3,N4
	CO3	Examine advanced ideas in the algebraic structures	K1,K2,K3,K4
	CO4	Solve the irreducibility of polynomials	K1,K2,K3,K4
	CO5	Explain chain conditions in Rings	K1,K2,K3,K4,K5
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	3	3	3	3
CO2	2	2	1	3	2
CO3	3	3	3	2	3
CO4	3	2	2	3	2
C05	3	3	2	3	3
	•	<u>ЭМ-</u>		•	2 Charles a

1-Low

2-Medium

3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	3	2	3	3
CO2	3	3	1	2	3
CO3	1	2	2	3	2
CO4	2	3	3	2	3
C05	3	3	2	3	3
	•				

1-Low

Syllabus

UNIT I

A counting principle - Normal subgroups and Quotient groups - Homomorphisms -Automorphisms - Cayley's theorem - Permutation groups.

UNIT II

Another counting principle - Sylow's theorem - Direct products – Finite Abelian groups.

UNIT III

Euclidean Ring – A particular Euclidean Ring - Polynomial Rings - Polynomials over the Rational fields.

UNIT IV

Generators of a subgroup – Derived subgroups – Normal series – Solvable groups –Composition series – Zassenhaus lemma – Schrier's Refinement theorem – Jordan-Holde theorem.

UNIT V

Noetherian Rings - Artinian Rings.

Text Books

Herstein, I.N., "Topics in Algebra", Wiley Student Edition 2014, India.

Surjeet Singh and Qazi Zameeruddin, "*Modern Algebra*", Vikas Publishing HousePvt. Ltd., 2015, New Delhi.

Unit - I: Book- 1: Chapter -2 Section -2.2-2.10 Unit - II: Book-1: Chapter -2 Section-2.11-2.14 Unit -III: Book-1: Chapter-3 Section-3.7-3.11 Unit -IV: Book-2: Chapter 4 Section-4.1-4.8 Unit - V: Book-2: Chapter 5 Section-5.1-5.2

2-Medium

3-Strong

18 Hours

18 Hours

16 Hours

20 Hours

18 Hours

Reference Books

Vijay K Khanna and S.K. Bhambri, "*A course in Abstract Algebra*", VikasPublishing House Pvt. Ltd., 2015, New Delhi.

Richard M. Foote and David S. Dummit, "*Abstract Algebra*", John Wiley Publications, 2011, New York.

Joseph A Gallian, "*Contemporary Abstract Algebra*", Narosa Publication, NewDelhi, 1999.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Iodule Topic		Content Delivery
No.	Горіс	Lectures	Methods
	UNIT – I		
1.1	A counting principle - Normal subgroups and Quotient groups	6	Chalk & Talk
1.2	Homomorphisms –Automorphisms.	6	PPT
1.3	Cayley's theorem - Permutation groups.	6	PPT
	UNIT – II		
2.1	Another counting Principal	4	Discussion
2.2	Sylow's Theorem	4	Chalk & Talk
2.3	Direct Product	4	E-Resources
2.4	Finite Abelian Groups	4	Chalk & Talk
UNIT – III			
3.1	Euclidean Rings	2	E-Resources
3.2	A Particular Euclidean Ring	4	Chalk & Talk
3.3	Polynomial Ring	4	Discussion
3.4	Polynomials over the rational field	4	Chalk & Talk
3.5	Polynomial rings over commutative Rings	4	Discussion
	UNIT – IV		
4.1	Generators of subgroup	2	Discussion
4.2	Derived subgroups	2	E-Resources
4.3	Normal series	4	Chalk & Talk
4.4	Solvable groups	4	Discussion
4.5	Composition series	2	E-Resources

4.6	Zassenhaus lemma	2	Chalk & Talk
4.7	Schrier's Refinement Theorem	2	Discussion
4.8	Jordan-Holder theorem	2	E-Resources
5.1	Noetherian Rings	9	Chalk & Talk
5.2	Artinian Rings	9	Chalk & Talk
	Total	90	

Course Designer Mr. M.Vignesh Babu

Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC12	Real Analysis	Core - II	90	4

Nature of Course		Course Relevance	
Knowledge Oriented		Local	
Skill Oriented	\checkmark	Regional	
Employability Oriented		National	
Entrepreneurship Oriented	✓	Global	✓

The course covers the analysis of integration, uniform convergence of sequence and series of functions. Uniform convergence plays a key role in finding approximate solutions to theoretical and practical problems.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Recall and apply the concepts of continuity, discontinuity,	K1 K2 K2 KA
COI	compactness and connectedness in metric spaces.	K1,K2,K3,K T
CO2	Demonstrate the differentiation of functions of real	K1 K2 K3 KA
02	Variables	K1,K2,K3,K T
CO3	Evaluate the integral of functions of a real variable in the	K1 K2 K3 K4 K5
005	sense of Riemann Stieltjes	K1,K2,K3,K 1 ,K3
CO4	Identity and classify the sequence of functions which	K1 K2 K3 K4 K5
04	point wise convergence and uniform convergence	K1,K2,K3,K 1 ,K3
	Analyze the structure of the exponential and logarithmic	
CO5	functions, the trigonometric functions, the gamma	K1,K2,K3,K4,K5
	functions	
74 17	- I I I I I I I I I I I I I I I I I I I	IZE Establishe

K1-Knowledge K2-Understand K3-Apply K4- Analyse K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
C01	2	1	1	3	3
CO2	3	3	2	2	2
CO3	2	2	2	3	3
CO4	3	3	2	3	2
C05	2	3	2	2	3
		0.14			0.0

	PS01	PSO2	PSO3	PSO4	PSO5
C01	2	3	1	3	3
CO2	1	3	2	2	2
CO3	3	3	2	3	3
CO4	2	3	1	3	2
CO5	3	3	2	3	3
l-Low	·	2-Me	dium		3-Strong

1-Low

Syllabus

UNIT I

Continuity: Limits of functions - Continuous Functions - Continuity and Compactness - Continuity and Connectedness - Discontinuities - Monotonic Functions – Infinite Limits and Limits at infinity.

UNIT II

Differentiation: The Derivative of a Real Function - Mean Value Theorems -The Continuity of Derivatives- L"Hospital's Rule - Derivatives of Higher Order – Taylor's Theorem– Differentiation of vector -valued functions.

UNIT III

The Riemann – Stieltjes Integral: Definition and Existence of the Integral – Properties of the Integral – Integration and Differentiation – Integration of Vector – Valued Functions – Rectifiable Curves.

UNIT IV

Sequences and Series of Functions: Discussion of Main Problem -Uniform – Uniform Convergence and Convergence Continuity – Uniform Convergence and Integration – Uniform Convergence and Differentiation.

UNIT V

Equicontinuous Families of Functions - The Stone - Weierstrass Theorem -Some Special Functions: Power Series – The Exponential and Logarithmic Functions - The Trigonometric functions- The Algebraic Completeness of the Complex Field – The Gamma Function.

Text Books

Walter Rudin., "Principles of Mathematical Analysis", Third Edition McGraw -Hill Education (India) Pvt. Ltd., New Delhi, 2013.

Unit -I: Chapter -4 (Full), Unit -II: Chapter-5 (Full)

Unit -III: Chapter-6 (Full), Unit -IV: Chapter-7 (Pages143-154)

Unit -V: Chapter -7 (Pages155-161), Chapter-8 (Pages172-185 & 192-195)

18 Hours

18 Hours

18 Hours

18 Hours

18 Hours

Reference Books

Karunakaran. V., "*Real Analysis, Pearson*", Chennai, 2012. Stephen Abbott, "*Understanding Analysis*", Springer Verlag, New York, 2010. Tom M. Apostol, "*Mathematical Analysis*", A Modern Approach to Advanced Calculus, Addison-Wesley Publishing Company, United States, 1969.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	odule Topic		Content Delivery
No.		Lectures	Methods
	UNIT – I		r
1.1	Limits of functions	1	Chalk & Talk
1.2	Continuous Functions	1	E-Resources
1.3	Continuity and Compactness	2	Discussion
1.4	Continuity and Connectedness	3	Chalk & Talk
1.5	Discontinuities	3	E-Resources
1.6	Monotonic Functions	4	Discussion
1.7	Infinite Limits and Limits at Infinity	4	Chalk & Talk
	UNIT – II		
2.1	The Derivative of a Real Function	2	E-Resources
2.2	Mean Value Theorems	2	Discussion
2.3	L" Hospital"s Rule	2	Chalk & Talk
2.4	Derivatives of HigherOrder	4	E-Resources
2.5	Taylor"s Theorem	4	Discussion
2.6	Differentiation of vector -valued functions	4	Chalk & Talk
	UNIT – III		
3.1	Properties of the Integral	4	E-Resources
3.2	Integration and Differentiation	4	Discussion
3.3	Integration of vector - valued functions	6	Chalk & Talk
3.4	Rectifiable Curves	4	Chalk & Talk
	UNIT – IV		
4.1	Discussion of Main Problem	4	PPT
4.2	Uniform Convergence and Continuity	6	PPT

4.3	Uniform Convergence and Integration	4	PPT
4.4	Uniform Convergence and Differentiation.	4	Chalk & Talk
	UNIT – V		
5.1	Equicontinuous Families of Functions	4	Discussion
5.2	The Stone –Weierstrass Theorem	3	PPT
5.3	Power Series	2	Discussion
5.4	The Exponential and Logarithmic Functions	4	Discussion
5.5	The Trigonometry Functions	2	PPT
5.6	The Gamma Function	3	Chalk & Talk
	Total	90	

Course Designer

Ms. A. Benazir

Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC13	Differential Equations	Core - III	90	4

Nature of Course		Course Relevance	
Knowledge Oriented		Local	
Skill Oriented 🖌		Regional	\checkmark
Employability Oriented	✓	National	
Entrepreneurship Oriented 🖌		Global	\checkmark

The course provides mathematical methods to solve higher order differential equations and understand the concept of power series solution, special functions, existence and uniqueness of solutions of ordinary differential equations and stability by Liapunov"s direct method.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	CO1	Apply concept Reduction of the order of a homogeneous	K1 K2 K2 KA
	COI	equation, The wronskian and linear independence	K1,K2,K3,K4
	CO2	Explain, Second order equations with regular singular	K1 K2 K2 KA K5
	CO2	points, The Bessel equation	K1,K2,K3,K4,K3
	CO3	Analyze and solve The Lipschitz condition, Convergence	K1 K2 K2 KA
		of The successive approximations,	K1,K2,K3,K4
	CO4	Find the Origins of first order Partial Differential	K1 K2 K2 KA
04		Equations-Cauchy's problem for first order equations	K1,K2,K3,K4
		Demonstrate Cauchy's method of Characteristics -	
(CO5	Compatible Systems of first order equations-Charpit's	K1,K2,K3,K4,K5
		method-Special types of first order equations.	
K	1-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
CO1	2	3	1	3	3
CO2	1	2	2	3	2
CO3	2	3	2	3	3
CO4	3	2	2	3	3
CO5	3	3	2	3	2
	-	2-Mo	dium	•	2-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5		
C01	3	3	2	3	3		
CO2	2	3	1	3	1		
CO3	3	3	3	2	3		
CO4	2	2	2	3	2		
CO5	3	3	2	2	3		
1-Low		2-Me	dium	·	3-Strong		

1-LOW

Syllabus

UNIT I

Introduction, Initial value problems for the homogeneous equation, Solutions of the homogeneous equation, The wronskian and linear independence, Reduction of the order of a homogeneous equation, The nonhomogeneous equation, Homogeneous equations with analytic coefficients, The Legendre equation.

UNIT II

Introduction, The Euler equation, Second order equations with regular singular points- an example, Second order equations with regular singular points- the general case. A convergence proof, The Exponential cases, The Bessel equation, The Bessel equation (continued).

UNIT III

Introduction, Equations with variables separated, Exact equations, The method of successive approximations, The Lipschitz condition, Convergence of the successive approximations, Non-local existence of solutions, Approximations to and uniqueness of solutions.

UNIT IV

Partial differential equations -Origins of first order Partial differential equations- Cauchy's problem for first order Equations-Linear equations of the first Order- Integral surfaces passing through a given curve.

UNIT V

Nonlinear Partial differential equations of the first Order-Cauchy's method of Characteristics-Compatible Systems of first order equations-Charpit's Method- Special types of first order equations.

18 Hours

18 Hours

18 Hours

18 Hours

18 Hours

Text Books

Coddington. E. A "*An introduction to Ordinary differential equations*", Prentice Hall of India, 1987.

Sneddon.I.N., " *Elements of Partial differential equations*" Tata McGraw Hill Book Company, 1986.

Unit – I: Book: 1Chapter 3 Sections 1 to 8

Unit - II: Book: 1 Chapter 4, Sections 1 to 8

Unit – III: Book: 1 Chapter 5, Sections 1 to 8

Unit – IV: Book2: Chapter 2, Sections 2.1 to 2.5

Unit – V: Book2: Chapter 2, Sections 2.6 to 2.11

Reference Books

Simmons.G. F and Krantze, " *Differential Equations*", 3rd Edition, Tata McGraw HillPublishing company, 2006.

Amarnath.T "*An elementary course in PDE*" Naraso Publication, 1997. Rukmangadachari. E differential equation Dorling Kindersley India Pvt.Ltd, 2012.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonic	No. of	Content Delivery
No.	Topic	Lectures	Methods
	UNIT – I		
1.1	Introduction	1	Chalk & Talk
1.2	Initial value problems for The homogeneous equation,	1	РРТ
1.3	Solutions of the homogeneous equation,	2	E-Resources
1.4	The wronskian and linear independence,	2	Chalk & Talk
1.5	Reduction of the order of a homogeneous equation,	2	РРТ
1.6	The non-homogeneous equation	3	E-Resources
1.7	Homogeneous equations with analytic coefficients	3	РРТ
1.8	The Legendre equation	4	Chalk & Talk

	UNIT – II		
2.1	Introduction ,	4	Discussion
2.2	The Euler equation	2	Chalk & Talk
2.3	Second order equations with regular singular points- an example	2	E-Resources
2.4	Second order equations with regular singular points	2	Discussion
2.5	The general case	2	Chalk & Talk
2.6	A convergence proof	2	Chalk & Talk
2.7	The Bessel equation	2	E-Resources
2.8	The Bessel equation (continued)	2	Discussion
	UNIT – III		
3.1	Introduction	1	E-Resources
3.2	Equations with variables separated	2	Chalk & Talk
3.3	Exact equations		Discussion
3.4	The method of successive approximations	4	Chalk & Talk
3.5	The Lipschitz condition,	3	E-Resources
3.6	Convergence of the successive approximations	2	Chalk & Talk
3.7	Non-local existence of solutions	2	Discussion
3.8	Approximations to and uniqueness of solutions	2	Chalk & Talk
	UNIT – IV		
4.1	Partial differentia equations	4	Discussion
4.2	Origins of first order Partial differential equations	2	E-Resources
4.3	Cauchy's problem for first order equations	2	Chalk & Talk
4.4	Linear equations of the first order	4	Chalk & Talk
4.5	Integral surfaces passing through a given curve	4	Chalk & Talk
4.6	Partial differentia equations	4	Discussion

UNIT – V						
51	Nonlinear Partial differential equations	C	E Dogourgog			
5.1	of the first order	3	L-Resources			
5.2	Cauchy's method of characteristics	3	Chalk & Talk			
5.2	Compatible Systems of first order	2	Discussion			
5.5	equations	Z	Discussion			
5.4	Charpit's method	2	Chalk & Talk			
5.5	Special types of first order equations	4	Chalk & Talk			
5.6	First order equations	4	Chalk & Talk			
	Total	90				

Course Designer

Ms. D. Gowsalya

Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC14	Graph Theory	Core - IV	90	5

Nature of Course		Course Relevance	
Knowledge Oriented 🖌		Local	
Skill Oriented		Regional	
Employability Oriented		National	
Entrepreneurship Oriented	✓	Global	✓

The course deals with the graph theoretical concepts connectivity, planarity and distance that help to model real life situations.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No		Course Outcome	Knowledge
	NU.	course outcome	Level
Γ	CO1	Relate connectivity concepts in the theory of network	K1 K2 K2 KA
COI		flow problems	N1,N2,N3,N4
ſ	CO2	Analyze and Apply planarity concepts in computer	
	CO2	graphics	K1,K2,K3,K4,K3
ſ	CO3	Apply the distance concepts in channel Assignment	K1,K2,K3,K4
Ī	CO4	Explain matching concepts in job assignment problems	K1,K2,K3,K4,K5
COF		Develop mathematical models of real life problems using	
	LU3	domination	K1,K2,K3,K4,K3
K	1-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
C01	3	3	1	3	3
CO2	2	3	2	3	2
CO3	2	3	3	2	3
CO4	3	3	2	3	3
CO5	3	1	2	3	3
1-Low	·	2-Me	dium	•	3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	3	2
CO2	3	2	1	3	3
CO3	3	3	2	2	3
CO4	3	3	2	1	2
C05	3	3	3	3	3
-Low		2-Me	dium		3-Strong

1-Low

Syllabus

UNIT I 18 Hours Connectivity: Cut-Vertices - Blocks - Connectivity - Manger's Theorem. **UNIT II 18 Hours** Matching's and Factorization: Matching's -Factorization- Decompositions and Graceful Labeling. **UNIT III** 18 Hours Planarity: Planar Graphs – Embedding Graphs on Surfaces. UNIT IV 18 Hours Coloring: The Four Color Problem – Vertex Coloring – Edge Coloring. **UNIT V 18 Hours** Distance: The Center of a Graph – Distant Vertices – Channel Assignment, Domination: The domination number of a graph.

Text Books

Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata McGraw -Hill, New Delhi, 2006.

Unit – I: Chapter Sections 5.1-5.4 Unit - II: Chapter8, Section8.18.3 Unit - III: Chapter 9, Sections 9.1 - 9.2 **Unit – IV:** Chapter 10, Sections 10.1 – 10.3 Unit - V: Chapter 12, Sections 12.1, 12.2, 12.5 and Chapter 13, Section 13.1

Reference Books

Balakrishnan R. and Ranganathan. K., "A Textbook of Graph Theory", 2nd Edition, Springer Verlag, New York, 2012.

Bondy, J.A. and Murthy. U.S.R., "*Graph Theory*", Springer-Verlag, London, 2008. Douglas B. West, to "Introduction Graph Theory "Prentice Hall of India, Singapore, 2001.

Harary, "Graph Theory", Narosa Publishing House, New Delhi, 1989.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonia	No. of	Content Delivery			
No.	Горіс	Lectures	Methods			
UNIT – I						
1.1	Connectivity : Cut- Vertices	2	Chalk & Talk			
1.2	Blocks	4	E-Resources			
1.3	Connectivity	6	Discussion			
1.4	Menger's Theorem	6	Chalk & Talk			
	UNIT – II					
2.1	Matchings and Factorization:Matchings	6	Discussion			
2.2	Factorization	6	Chalk & Talk			
2.3	Decompositions, Graceful Labelings	6	E-Resources			
	UNIT – III					
3.1	Planarity: Planar Graphs	9	E-Resources			
3.2	Embedding Graphs on Surfaces	9	Chalk & Talk			
	UNIT – IV					
4.1	Coloring: The Four Color Problem	9	Discussion			
4.2	Vertex Coloring Edge Coloring	9	E-Resources			
	UNIT – V					
5.1	Distance: The Center of a Graph -Distant	6	E-Resources			
5.2	Vertices – Channel Assignment	4	Chalk & Talk			
52	Domination: The domination number of a	Λ	Discussion			
5.5	graph	4	DISCUSSIOII			
5.4	Connectivity : Cut-Vertices	4	Chalk & Talk			
	Total	90				

Course Designer Ms. M. VijayaSankari Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAE11	Mechanics	Elective -I	90	5

Nature of Course		Со	ourse Relevance	
Knowledge Oriented		Lo	ocal	
Skill Oriented	✓	Re	egional	
Employability Oriented	✓	Na	ational	
Entrepreneurship Oriented	✓	Glo	obal	\checkmark

The course deals with Hamiltonian's Principles and Lagrange's equations. Poisson and Jacobi brackets are classified through canonical transformations.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

Ī	No	Course Outcome	Knowledge
	NU.	Course Outcome	Level
	CO1	Recall the elementary principles of mechanics	K1,K2,K3,K4
	CO2	Analyze and Demonstrate the Holonomic and non-	K1 K2 K3 KA
	CO2	Holonomic systems	K1,K2,K3,K4
ſ	CO3	Solve one body central force problems	K1,K2,K3,K4
ſ	CO4	Evaluate an orbit equation for the Kepler Problem by	K1 K2 K2 KA K5
	C04	using the Laplace-Runge – Lenz vector	K1,K2,K3,K4,K3
	C05	Define and solve the equations of canonical	K1 K2 K2 K4 K5
003		transformations	K1,K2,K3,K4,K3
K1-Knowledge		vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
C01	3	3	1	2	3
CO2	3	2	1	3	2
CO3	3	3	2	3	3
CO4	3	3	3	3	3
CO5	3	3	2	2	3
1-Low	·	2-Me	dium	•	3-Strong

	PS01	PSO2	PSO3	PSO4	PSO5
C01	1	3	1	2	3
CO2	3	3	1	3	3
CO3	3	2	2	3	3
CO4	3	2	2	3	3
CO5	3	3	2	3	3
1-Low		2-Me	dium	•	3-Strong

Syllabus

UNIT I

Mechanics of a particle, Mechanics of a system of particles, Constraints D"Alembert"s Principle and Lagrange's equations, velocity-dependent potentials and the dissipation function, Hamilton's principle, some techniques of the calculus of variations.

UNIT II

Derivation of Lagrange's equation from Hamilton's principle, Extension of Hamilton's principle to nonholonomic systems, Conservation theorems and symmetry properties.

UNIT III

Reduction to the equivalent one-body problem, The equations of motion and first integrals, The Virial theorem.

UNIT IV

The Differential equation for the orbit and integral power – law potentials, conditions for closed orbits (Bertrand's theorem) The Kepler problem Inverse square law of force, the motion in time in the Kepler problem, the Laplace – Rungelenz vector.

UNIT V

18 Hours

Canonical transformation: The equations of canonical Transformation -Examples of canonical Transformations-Poisson brackets and other canonical invariants.

Text Books

Herbert Goldstein, "Classical Mechanics", Second Edition, Narosa Publishing House, 2002.

Unit I: Book-1Chapter -1 Section -1.1-1.5, Unit II: Book-1Chapter-2 Section 2.1, 2.2 Unit III: Book-1Chapter -2 Section-2.3, 2.4 and 2.6 Unit IV: Book-1Chapter -3 Section-3.1, 3.2 and 3.4 **Unit V:** Book-1Chapter -9 Section 9.1, 9.2, 9.4

2-Medium

18 Hours

18 Hours

18 Hours

18 Hours

Reference Books

Gupta, Kumar, Sharma," *Classical Mechanics"*, 2012 Pragati Prakashan. Bhatia V.B.," *Classical Mechanics"*, Narosa Publishing House

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonic	No. of	Content Delivery					
No.	Topic	Lectures	Methods					
	UNIT – I							
1.1	Mechanics of a particle, Mechanics of a system of particles	2	Discussion					
1.2	Constraints D"Alembert"s Principle Lagrange's equations, velocity	4	E-Resources					
1.3	dependent potentials and the dissipation function	4	Chalk & Talk					
1.4	Hamilton's principle	4	E-Resources					
1.5	some techniques of the calculus of variations	4	Chalk & Talk					
2.1	Another counting Principal	4	Chalk & Talk					
2.2	Sylow's Theorem	5	Chalk & Talk					
2.3	Direct Product	5	Chalk & Talk					
2.4	Finite Abelian Groups	4	Chalk & Talk					
	UNIT – III							
3.1	Euclidean Rings	2	Chalk & Talk					
3.2	A Particular Euclidean Ring	4	E-Resources					
3.3	Polynomial Ring	4	Chalk & Talk					
3.4	Polynomials over the rational field	4	E-Resources					
3.5	Polynomial rings over commutative rings	4	Discussion					
	UNIT – IV							
4.1	Generators of subgroup	2	Chalk & Talk					
4.2	Derived subgroups	2	E-Resources					
4.3	Normal series	3	Discussion					

4.4	Solvable groups	3	Chalk & Talk
4.5	Composition series	2	PPT
4.6	Zassenhaus lemma	2	PPT
4.7	Schrier's Refinement theorem	2	E-Resources
4.8	Jordan-Holder theorem	2	Discussion
	UNIT – V		
5.1	Noetherian Rings	9	E-Resources
5.2	Artinian Rings	9	Chalk & Talk
	Total	90	

Course Designer

Ms. A. Benazir

Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAE12	Numerical Analysis	Elective - I	90	5

Nature of Course		Course Relevance	
Knowledge Oriented		Local	
Skill Oriented	\checkmark	Regional	
Employability Oriented	✓	National	
Entrepreneurship Oriented	✓	Global	\checkmark

The course provides mathematical methods to solve higher order differential equations and understand the concept of power series solution, special functions, existence and uniqueness of solutions of ordinary differential equations and stability by Liapunov"s direct method.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge
			Level
	CO1	How to find complex roots	K1,K2,K3,K4
	CO2	Demonstrate and Analyze Eigen values and Eigen vectors	K1,K2,K3,K4
	CO3	Apply finite difference in Interpolating Polynomials	K1,K2,K3,K4,K5
	CO4	Classify and Explain Differentiation and Integration in	
	C04	Numerical Methods	N1,N2,N3,N4,N3
	C05	Analyze Initial value problems in Ordinary differential	K1 K2 K2 KA K5
	CUJ	equations	K1,K2,K3,K4,K3
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	3	1	3	2
CO2	2	2	1	3	3
CO3	2	3	3	3	3
CO4	3	3	3	2	2
CO5	3	3	2	3	3

	PS01	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	3	3
CO2	2	3	1	3	3
CO3	3	3	2	3	3
CO4	2	3	3	2	3
CO5	3	3	2	3	3
-Low		2-Me	dium		3-Strong

1-Low

Syllabus

UNIT I

Transcendental and Polynomial Equations: Iteration methods based on second degree equation- General iteration methods-system of nonlinear equations- Methods for complex Roots-Polynomial equations.

UNIT II

System of Linear Algebraic Equations and Eigen Value Problems: Introduction, Direct methods, - Iteration Methods-Eigen values and Eigen vectors, Jacobi method for symmetric matrices.

UNIT III

Interpolation and Approximation: Introduction, Lagrange and Newton interpolations, Finite difference Operators, interpolating polynomials using finite differences, Hermite interpolation.

UNIT IV

Differentiation and Integration - Introduction, Numerical Differentiation, Extrapolation methods, Partial Differentiation, Numerical integration, Methods based on interpolation, Composite integration methods, Romberg Integration.

UNIT V

Ordinary Differential Equations: Problems-Initial Value Introduction, Difference equations, Numerical methods, Single step methods, Multi step Methods-Predictor- Corrector Methods.

Text Books

Jain M.K., Iyengar S. R. K. and Jain. R. K, "Numerical Methods for Scientific and

Engineering Computation", 6th Edition, New Age International Publishers, 2012.

```
Unit – I: Chapter -2 Section -2.4, 2.6, 2.7, 2.8, 2.9
```

Unit - II: Chapter -3 Section-3.1, 3.2, 3.4 (Omitting SOR method, convergence Analysis of Iterative methods, Optimal Relaxation parameter for the SOR method, Iterative method to determine A-1), 3.5, 3.7

Unit - III: Chapter-4 Section-4.1-4.5

Unit – IV: Chapter 5 Section 5.1, 5.2, 5.4-5.7, 5.9, 5.10

Unit - V: Chapter 6 Section 6.1-6.4, 6.6, 6.7

2-Medium

18 Hours

18 Hours

18 Hours

18 Hours

18 Hours

Reference Books

Kandasamy. P., Thilagavathy., K Gunavathi.K., "*Numerical Methods*", Sultanch and, 2006.

Sastry. S.S., "*Introductory Methods of Numerical Analysis*", Fourth Edition, PHI Learning Private Ltd. 2009.

Dr. VedamurthV.Ny, Dr. Ch. S.N. Iyengar. "*Numerical Methods*", Vikas Publishing House, 2011.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonia	No. of	Content Delivery				
No.	Горіс	Lectures	Methods				
UNIT – I							
1.1	Iteration Methods Based on Second Degree Equation	2	E-Resources				
1.2	General Iteration Methods	3	Chalk & Talk				
1.3	system of nonlinear equations	4	Chalk & Talk				
1.4	Methods for complex roots	5	E-Resources				
1.5	Polynomial equations.	4	Discussion				
UNIT – II							
2.1	Introduction, Direct methods	4	Chalk & Talk				
2.2	Iteration methods	4	E-Resources				
2.3	Eigen values and Eigen vectors	5	Discussion				
2.4	Jacobi method for symmetric matrices	5	Chalk & Talk				
	UNIT – III						
3.1	Introduction, Lagrange and Newton interpolations	2	Chalk & Talk				
3.2	Finite difference Operators	5	Chalk & Talk				
3.3	Interpolating polynomials using finite differences	5	E-Resources				
3.4	Hermite interpolation	5	Discussion				

	UNIT – IV		
4.1	Introduction, Numerical Differentiation	1	Discussion
4.2	Extrapolation methods	3	E-Resources
4.3	Partial Differentiation	3	Chalk and Talk
4.4	Numerical integration	3	Chalk and Talk
4.5	Methods based on interpolation	4	Discussion
4.6	Composite integration methods	2	E-Resources
4.7	Romberg Integration	2	Discussion
	UNIT – V		
5.1	Introduction, Difference equations	4	E-Resources
5.2	Numerical methods	4	Chalk & Talk
5.3	Single step methods	3	Discussion
5.4	Multi-step Methods	4	Chalk & Talk
5.5	Predictor-Corrector Methods.	3	Chalk & Talk
	Total	90	

Course Designer

Ms. A. Benazir Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC21	Linear Algebra	Core - V	90	4

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented	\checkmark	Regional	
Employability Oriented		National	v
Entrepreneurship Oriented		Global	v

The course deals with the relation between a linear transformation and its matrix. Various properties of transformations are discussed through matrices.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	CO1	Recall and demonstrate the concept of dual spaces and	V1 V2 V2 VA
	COI	inner product spaces	N1,N2,N3,N4
	CO2	Analyze and Construct Algebra of Transformation	K1,K2,K3,K4
	CO 2	Determine canonical forms and nilpotent	K1 K2 K2 KA K5
	603	transformations	N1,N2,N3,N4,N3
	CO4	Determine Rational canonical forms trace and transpose	K1,K2,K3,K4,K5
	C05	Demonstrate the Hermitian, Unitary and normal	K1 K2 K2 KA K5
	605	transformations	N1,N2,N3,N4,N3
K	1-Knov	K5- Evaluate	

Mapping of CO with PO

	P01	P02	P03	P04	P05
C01	2	3	1	1	3
CO2	3	2	1	3	3
CO3	3	3	2	3	1
CO4	1	2	2	1	3
CO5	3	3	2	3	1
1-Low	·	2-Me	dium	•	3-Strong

	PS01	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	3	3
CO2	1	3	1	3	3
CO3	1	3	2	3	2
CO4	3	2	2	3	3
CO5	3	3	2	3	3
1-Low		2-Me	dium		3-Strong

Syllabus

UNIT I

Linear independence and bases, Dual spaces, Inner product spaces.

UNIT II

Modules, the algebra of linear transformation, characteristic roots, matrices.

UNIT III

Canonical forms. Nilpotent transformations, A Triangular form, decomposition of V: Jordan form.

UNIT IV

Canonical forms, Rational canonical form, Trace and Transpose.

UNIT V

Determinants, Hermitian, Unitary and Normal Transformations, real quadratic forms.

Text Books

Herstein., I.N., "*Topics in Algebra*", John Wiley and sons, 2nd Edition, 1999. **UNIT I:** Chapter 4 – Section 4.2 to 4.4 **UNIT II:** Chapter 4 - Section 4.5, Chapter 6 - Section 6.1 to 6.3 UNIT III: Chapter 6 - Section 6.4, 6.5 and 6.6

UNIT IV: Chapter 6 - Section 6.7 and 6.8

UNIT V: Chapter 6 – Section 6.9 and 6.10

Reference Books

Joseph Gallian. A., *Contemporary Abstract Algebra*, Narosa Publication, New Delhi. 1999.

Kenneth Hoffman and Ray Kunze., *Linear Algebra*, PHI Learning Pvt. Ltd., New Delhi, 2009.

Vijay K Khanna and Bhambri, S.K., A course in Abstract Algebra, Vikas Publishing House Pvt. Ltd., Chennai, 2012.

2-Medium

18 Hours

18 Hours

18 Hours

18 Hours

18 Hours

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonic	No. of	Content Delivery			
No.	Торіс	Lectures	Methods			
	UNIT – I					
1.1	Linear independence and bases	6	Chalk & Talk			
1.2	Dual spaces	6	E-Resources			
1.3	Inner product spaces	6	Discussion			
	UNIT – II	L				
2.1	Modules	4	Discussion			
2.2	The algebra of linear transformations	5	Chalk & Talk			
2.3	Characteristic roots	4	E-Resources			
2.4	Matrices	5	Chalk & Talk			
	UNIT – III					
3.1	Canonical forms - Triangular forms	6	E-Resources			
3.2	Nilpotent transformation	6	Chalk & Talk			
3.3	A decomposition of V:Jordan form.	6	Discussion			
	UNIT – IV					
4.1	Canonical forms Rational canonical form	9	Discussion			
4.2	Trace and Transpose.	9	E-Resources			
UNIT – V						
5.1	Determinants	9	Chalk & Talk			
5.2	Hermitian, Unitary and Normal Transformation real quadratic forms	9	E-Resources			
	Total	90				

Course Designer Ms. A. Benazir Assistant Professor of Mathematics
Course Code	Course Title	Category	Total Hours	Credits
20PMAC22	Complex Analysis	Core - VI	90	5

Nature of Course		Course Rel	evance	
Knowledge Oriented 🖌		Local		
Skill Oriented 🖌		Regional		
Employability Oriented	✓	National		
Entrepreneurship Oriented		Global	•	 Image: A start of the start of

The course introduces limit, continuity and differentiability of functions of complex variables. Complex functions are expanded as Taylor and Laurent's series. Contour integrals are evaluated using residues.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	CO1	Recall and Analyze the concept in complex functions	K1,K2,K3,K4
	CO2	Define and Evaluate complex integrals	K1,K2,K3,K4,K5
	CO3	Classify elliptic function and analyze their properties	K1,K2,K3,K4
	CO4	Find the Taylor and Laurent series expansions for complex functions	K1,K2,K3,K4,K5
	CO5	K1,K2,K3,K4,K5	
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05	
CO1	3	3	1	3	3	
CO2	3	1	1	1	3	
CO3	2	3	2	3	2	
CO4	3	2	2	2	3	
CO5	1	3	2	3	1	
-Low 2-Madium 3-Strong						

1-LOW

z-meaium

3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	3	3
CO2	3	3	1	3	3
CO3	2	1	2	3	1
CO4	3	3	2	2	3
CO5	3	3	2	3	3

1-Low

Syllabus

UNIT I

I 18 Hours Complex Functions: Introduction to the concept of analytic functions – Limits and Continuity – Analytic functions – Polynomials – Rational functions. Elementary theory of Power series – Sequences, Series, Uniform Convergence, Power Series, Abdel's Limit theorem –The Exponential and Trigonometric Functions: The Exponential, the Trigonometric Functions – The Periodicity – The Logarithm.

UNIT II

Complex Integration: Fundamental Theorems – Line Integrals, Rectifiable arcs – Line Integrals as Functions of arcs – Cauchy's theorem for a rectangle – Cauchy's theorem in a disk – Cauchy's Integral formula – Index of a point – Integral Formula – Higher derivatives –Local Properties of Analytical Functions – Removable singularities – Taylor"s theorem – Zeros and poles – The Local mapping – The Maximum Principle.

UNIT III

Complex Integration: Calculus of Residues- Residue theorem, Argument Principle, Evaluation of definite Integrals. Harmonic Functions- Definition and Basic properties, the Mean- value Property, Poisson's Formula.

UNIT IV

Series and Product Development: Power Series Expansions: Weierstrass's Theorem – The Taylor Series – The Laurent Series –Partial Fractions and Factorization: Partial Fractions – Infinite Products – Canonical Products – The Gamma Function – Entire functions: Jensen's Formula – Hadamard's theorem.

UNIT V

18 Hours

Elliptic Functions: Doubly Periodic Functions – The Period Module – Unimodular Transformations – The Canonical Basis – The General Properties of Elliptic Functions – Weierstrass Theory – Weierstrass p Function – The Function ς (z) and σ (z)– The Differential Equation.

2-Medium

3-Strong

18 Hours

18 Hours

Text Books

Ahlfors, V., "Complex Analysis", McGraw-Hill Education India, 3rd Edition, 2013.
UNIT I: Chapter 2
UNIT II: Chapter 4 - Section 4.1, 4.2 and 4.3
UNIT III: Chapter 4 - Section 5.1, 5.2, 5.3, 6.1 to 6.3
UNIT IV: Chapter 5 - Section 1.1 to 1.3, 2.1 to 2.4, 3.1 to 3.2
UNIT V: Chapter 7 - Section 2.1 to 2.4 and 3.1 to 3.3

Reference Books

Roopkumar. R., "*Complex analysis"*, Dorling Kinderley Pvt. Ltd., NewDelhi, 2015. Ponnusamy. S., "*Foundation of Complex Analysis*", Narosa Publishing House, New Delhi, 2013.

Karunakaran, V., "*Complex Analysis*", Narosa Publishing House Pvt. Ltd. 2nd Edition, New Delhi, 2006.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Tonic	No. of	Content Delivery		
No.	Торіс	Lectures	Methods		
	UNIT – I				
11	Introduction to Analytic functions: Limits	4	Chalk & Talk		
1.1	and Continuity - Analytic functions	1	chaix & raix		
	Polynomials - Rational functions -				
1.2	Elementary theory of Power series:	mentary theory of Power series: 4			
	Sequences - Series				
1.3	Uniform Convergence - Power Series	2	Discussion		
1 /	Abel's Limit theorem - The Exponential	Λ	Challs & Talls		
1.4	Functions	4	CHAIK & TAIK		
1 ⊑	The Trigonometric Functions - The	4	E D.		
1.5	Periodicity - The Logarithm	4	E-Resources		
	UNIT – II				
	Complex Integration: Fundamental				
2.1	Theorems – Line Integrals, Rectifiable	3	E-Resources		
	arcs.				

2.2	Line Integrals as Functions of arcs – Cauchy's theorem for a rectangle.	3	Discussion				
2.3	Cauchy's theorem in a disk – Cauchy's Integral formula – Index of a point.	3	Chalk & Talk				
2.4	Integral Formula – Higher derivatives – Local Properties of Analytical Functions.	3	E-Resources				
2.5	Removable singularities – Taylor"s theorem – Zeros and poles.	3	Discussion				
2.6	The Local mapping – The Maximum Principle.	3	Chalk & Talk				
	UNIT – III						
3.1	Complex Integration: Calculus of Residues.	4	E-Resources				
3.2	Residue theorem, Argument Principle, Evaluation of definite Integrals.	6	Discussion				
3.3	Harmonic Functions- Definition and Basic properties, the Mean- value Property, Poisson's Formula.	8	Chalk & Talk				
	UNIT – IV						
4.1	Series and Product Development: Power Series Expansions: Weierstrass's Theorem.	5	Discussion				
4.2	The Taylor Series – The Laurent Series – Partial Fractions and Factorization.	5	E-Resources				
4.3	Partial Fractions – Infinite Products – Canonical Products.	3	РРТ				
4.4	The Gamma Function – Entire functions: Jensen's Formula – Hadamard's theorem.	5	Chalk & Talk				
	UNIT – V						
5.1	Elliptic Functions: Doubly Periodic Functions – The Period	5	Discussion				
5.2	Module – Unimodular Transformations – The Canonical Basis – The General Properties of Elliptic Functions.	6	Chalk & Talk				
5.3	Weierstrass Theory – Weierstrass p Function – The Function ς (z) and σ (z) – The Differential Equation.	7	E-Resources				
	Total	90					

Course Code	Course Title	Category	Total Hours	Credits
20PMAC23	Differential Geometry	Core - VII	90	4

Nature of Course		Course Relevance
Knowledge Oriented 🖌		Local
Skill Oriented		Regional
Employability Oriented		National
Entrepreneurship Oriented		Global

The course emphasizes concrete aspects of geometry centered on the notion of curvature.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No	Course Outcome	Knowledge
NO.		Level
CO1	Recall and Analyze knowledge in space curves	K1,K2,K3,K4
CO2	Demonstrate the metric concepts in surface	K1,K2,K3,K4,K5
CO3	Find geodesics on curves	K1,K2,K3,K4
CO4	Apply surfaces of revolution	K1,K2,K3
CO5	Evaluate principal curvature and line of curvature	K1,K2,K3,K4
X1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	3	1	3	3
CO2	3	3	1	2	1
CO3	2	2	2	3	3
CO4	1	3	2	3	2
C05	3	1	1	2	3

1-Low

2-Medium

3-Strong

Mapping of CO with PSO

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	3	1	3	3
CO2	3	2	1	3	2
CO3	3	3	2	1	3
CO4	1	2	2	3	3
CO5	3	3	2	2	1
		0.14			0.0

Syllabus

UNIT I

The Theory of space curves: Arc length – Tangent, normal and binormal – Curvature and Torsion – The curvature and torsion of a curve as the intersection of two surfaces - Contact between curves and surfaces – Osculating circle and osculating sphere - Tangent surface, involutes and evolutes – Intrinsic equations of space curves – Fundamental existence theorem for space curves - Helices.

UNIT II

The First Fundamental Form: Introduction – Definition of a surface – Nature of points on a surface – Curves on surfaces – Tangent plane and surface normal – The general surfaces of revolution – Helicoids – Metric on a surface – First Fundamental form – Direction Coefficients on a surface – Families of curves – Orthogonal trajectories -Isometric correspondence – Intrinsic properties.

UNIT III

Geodesics on a Surface: Introduction – Geodesic and their differential equations -Canonical geodesic equations –Geodesics on surfaces of revolution - Existence theorem – Geodesic parallels – Geodesics polar coordinates - Geodesic curvature – Gauss–Bonnet theorem

UNIT IV

The Second Fundamental Form and local Non-Intrinsic Properties of a Surface: Introduction – The second fundamental form – Classification of points on a surface – Principal curvature – Lines of curvature – The Dupin indicatrix.

UNIT V

18 Hours

The Second Fundamental Form and local Non-Intrinsic Properties of a Surface: Developable surfaces – Developables associated with associated with space curves - Developables associated with associated with curves on surfaces- Minimal surface – Ruled surface.

Text Books

Somasundaram. D., "*Differential Geometry*," Narosa Publishing House, Chennai, 2014.

UNIT I: Chapter 1 – Section- 1.4 to 1.7, 1.9 to 1.11, 1.13, 1.16 to 1.18 UNIT II: Chapter 2 - Section 2.1 to 2.3, 2.5 to 2.12, 2.14, 2.15 UNIT III: Chapter 3 - Section 3.1to 3.4, 3.7 to 3.11 UNIT IV: Chapter 4 - Section 4.1 to 4.6 UNIT V: Chapter 4 – Section 4.7 to 4.11

18 Hours

18 Hours

18 Hours

Reference Books

Mittal and Agarwal, *Differential Geometry*, Krishna prakasam Publishers, Uttar Pradesh, 1998.

Willmore. T.J., *An introduction to Differential Geometry*, Oxford university press, New Delhi, 2010.

Thierry Aubin, *Differential Geometry*, American Mathematical Society, Providence, US, 2001.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Torrig	No. of	Content Delivery				
No.	горіс	Lectures	Methods				
UNIT – I							
1.1	The Theory of space curves: Arc length – Tangent, normal and binormal – Curvature and Torsion	5	Chalk & Talk				
	The curvature and torsion of a curve as						
1.2	the intersection of two surfaces - Contact between curves and surfaces	5	РРТ				
1.3	Osculating circle and osculating sphere - Tangent surface, involutes and evolutes	3	E-Resources				
1.4	Intrinsic equations of space curves – Fundamental existence theorem for space curves - Helices.	5	Chalk & Talk				
	UNIT – II						
2.1	The First Fundamental Form: Introduction – Definition of a surface	4	Discussion				
2.2	Nature of points on a surface – Curves on surfaces – Tangent plane and surface normal	4	Chalk & Talk				
2.3	The general surfaces of revolution – Helicoids – Metric on a surface - First Fundamental form	4	E-Resources				
2.4	Direction Coefficients on a surface - Families of curves – Orthogonal trajectories	4	Discussion				

2.5	Isometric correspondence – Intrinsic properties.	2	Chalk & Talk			
	UNIT – III					
3.1	Introduction – Geodesic and their differential equations	4	E-Resources			
3.2	Canonical geodesic equations –Geodesics on surfaces of revolution	4	Chalk & Talk			
3.3	Existence theorem – Geodesic parallels	3	Discussion			
3.4	Geodesics polar coordinates	3	Chalk & Talk			
3.5	Geodesic curvature	2	E-Resources			
3.6	Gauss-Bonnet theorem	2	Chalk & Talk			
UNIT – IV						
4.1	Introduction – The second fundamental form	4	Discussion			
4.2	Classification of points on a surface	5	E-Resources			
4.3	Principal curvature – Lines of curvature	5	Chalk & Talk			
4.4	The Dupin indicatrix.	4	Chalk & Talk			
	UNIT – V					
5.1	Developable surfaces – Developables associated with associated with space curves	8	E-Resources			
5.2	Developables associated with associated with curves on surfaces	6	Chalk & Talk			
5.3	Minimal surface – Ruled surface.	4	Discussion			
	Total	90				

Course Designer Mr. M. Vignesh Babu Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC24	Mathematical Statistics	Core -VIII	90	5

Nature of Course		Course Re	elevance	
Knowledge Oriented	✓	Local		
Skill Oriented		Regional		
Employability Oriented	✓	National		
Entrepreneurship Oriented	✓	Global		\checkmark

The course deals with various distributions of discrete and continuous types. Estimation of parameters and testing of hypotheses are studied in detail.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No	Course Outcome	Knowledge
110.		Level
C01	Recall and interpret different types of distributions	K1,K2,K3,K4
CO2	Find the limiting distribution of a sequence of random	K1 K2 K3 KA
02	variables	N1,N2,N3,N 1
CO3	Analyze and Develop statistical inferences	K1,K2,K3,K4,K5
CO4	Identify the appropriate maximum likelihood methods	
04	for a given situation and use it to estimate the parameter	K1,K2,K3,K4,K3
CO5	Demonstrate optimal testing of hypotheses	K1,K2,K3,K4,K5
K1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	2	2	1	3	3
CO2	3	3	1	2	2
CO3	3	3	2	2	3
CO4	3	2	2	3	3
C05	2	3	2	3	2
1 Low 2 Modium				2 Strong	

1-Low

2-Medium

3-Strong

	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	3	2
CO2	1	1	1	3	3
CO3	3	3	2	3	2
CO4	2	2	2	2	3
C05	3	3	2	3	3
					0.0

1-Low

Syllabus

UNIT I

Some special distributions The Binomial and related distributions - Poisson distribution – The Gamma, Chi-square and Beta distributions – The Normal distribution – The multivariate normal distribution.

UNIT II

Some special distribution, unbiasedness, consistency and limiting distribution -The t and F distributions – Expectations of functions – Convergence in probability –Convergence in distributions – Central limit theorem.

UNIT III

Some elementary statistical inference, Sampling and statistics – Order statistics – More on confidence interval – Introduction to hypothesis testing – Additional comments about statistical tests.

UNIT IV

Maximum likelihood methods, sufficiency: Maximum likelihood estimation – Rao cramer lower bounded efficiency – Maximum likelihood test – Measure of quality of estimators-A sufficient statistic for a parameter – Properties of a sufficient statistic.

UNIT V

18 Hours

Optimal test of Hypotheses, Most powerful tests – Uniformly most powerful tests – Likelihood Ratio tests – The sequential probability ratio test.

Text Books

Hogg, R.V., Craig, A.T., and Mckean, J.W., *"Introduction to Mathematical Statistics"*, Pearson Education, India, 2005.
UNIT I: Chapter 3 – Section- 3.1 to 3.5
UNIT II: Chapter 3 - Section 3.6, Chapter 4 – Section-4.1to 4.4
UNIT III: Chapter 5 - Section 5.1, 5.2, 5.4 to 5.6
UNIT IV: Chapter 6 - Section 6.1 to 6.3, Chapter 7 - Section 7.1 to 7.3

UNIT V: Chapter 8 – Section 8.1 to 8.4

2-Medium

3-Strong

18 Hours

18 Hours

18 Hours

Reference Books

Gupta, S.C., and Kapoor, V.K., *"Mathematical Statistics"*, Sultan and Chandson's publishers, New Delhi, Edition 2000.

Kapoor, J.N., and Saxena, H.C.," *Mathematical Statistics*", S. Chand & Co, New Delhi, 25th Edition, 2009.

Irwin Miller & Maryless Miller John, s., Freund, s., *"Mathematical Statistics"*, Pearson Education, India, 2004.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Tonia	No. of	Content Delivery				
No.	Горіс	Lectures	Methods				
UNIT – I							
1.1	Some special distributions The Binomial and related distributions	3	Chalk & Talk				
1.2	Poisson distribution	3	E-Resources				
1.3	The Gamma, Chi-square and Beta distributions,	4	Discussion				
1.4	The Normal distribution	4	Chalk & Talk				
1.5	The multivariate normal distribution.	4	E-Resources				
	UNIT – II						
2.1	Some special distribution, unbiasedness, consistency and limiting distribution	6	Discussion				
2.2	The t and F distributions – Expectations of functions	6	Chalk & Talk				
2.3	Convergence in probability –Convergence in distributions – Central limit theorem.	6	E-Resources				
	UNIT – III						
3.1	Some elementary statistical inference, Sampling and statistics	5	E-Resources				
3.2	Order statistics – More on confidence interval	5	Chalk & Talk				
3.3	Introduction to hypothesis testing	3	Discussion				
3.4	Additional comments about statistical tests.	5	E-Resources				

	UNIT – IV					
4.1	Maximum likelihood methods, sufficiency:	5	Discussion			
	Maximum likelihood estimation					
4.2	Rao cramer lower bounded efficiency -	1				
4.2	Maximum likelihood test	4	E-Resources			
4.3	Measure of quality of estimators	3	Chalk & Talk			
4.4	A sufficient statistic for a parameter	3	E-Resources			
4.5	Properties of a sufficient statistic.	3	Chalk & Talk			
	UNIT – V					
5.1	Optimal test of Hypotheses, Most powerful tests	6	E-Resources			
5.2	Uniformly most powerful tests	4	Chalk & Talk			
5.3	Likelihood Ratio tests	4	Discussion			
5.4	The sequential probability ratio test.	4	Chalk & Talk			
	Total	90				

Course Designer Ms. D. Gowsalya Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAE21	Combinatorial	Floctivo -II	00	Б
	Mathematical	Liective -II	90	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented	✓	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	✓

The course deals with enumeration problems using generating functions and recurrence relation.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	CO1	Provides the counting strategy to solve and analyze	K1 K2 K2 KA
	UUI	combinatorial identities	N1,N2,N3,N 1
	CO2	Explain about generating function for combinations	K1 K2 K3 K4
	02	,Enumerators for permutations	111,112,113,117
	CU3	Determine the recurrence relations and solve with	K1 K2 K3 K4 K5
	005	generating functions	K1,K2,K3,K4,K3
	CO4	Demonstrate inclusion-exclusion Principle.	K1,K2,K3,K4,K5
	CO5	Recall Polya's formula and solve enumeration problems	K1,K2,K3,K4,K5
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
CO1	3	3	1	2	3
CO2	2	1	3	3	2
CO3	3	3	2	1	3
CO4	3	3	2	3	3
CO5	2	3	2	2	2
1-Low 2-Medium			3-Strong		

	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	1	3
CO2	3	3	1	3	3
CO3	2	3	2	3	2
CO4	3	2	2	2	3
CO5	3	3	2	3	3
-Low 2-Medium 3-Stro			3-Strong		

Syllabus

UNIT I

18 Hours

18 Hours

Introduction – the rules of sum and product – permutations – combinations - distribution of distinct objects - distributions of non - distinct objects.

UNIT II

Introduction - Generating functions for combinations - Enumerators for permutation - distributions of distinct objects into non - distinct cells partitions of integer – elementary relations.

UNIT III

Introduction - Linear recurrence relations with constant coefficients solution by the technique of generating functions – recurrence relations with two indices.

UNIT IV

Introduction – The principle of inclusion and exclusion – the general formula – derangements.

UNIT V

Introduction – Equivalence classes under permutation group – equivalence classes of functions - weight and inventories of functions - Polya"s fundamental theorem – generalizations of Polya"s theorem.

Text Books

Liu, C.T., "Introduction to combinatorial Mathematics", McGraw Hill, 1968.

UNIT I: Chapter 1 – Section-1.1to 1.6 UNIT II: Chapter 2 - Section 2.1 to 2.5 and 2.7 UNIT III: Chapter 3 - Section 3.1 to 3.3 and 3.5 **UNIT IV:** Chapter 4 - Section 4.1 to 4.4 **UNIT V:** Chapter 5 – Section 5.1, 5.3 to 5.7

18 Hours

18 Hours

Reference Books

Richard Brualdi, A., " *Introductory Combinatorics*", Pearson Education Inc, Asia Limited and China Machine Press, 5th Edition, 2010.

Krishnamurthy, V., "*Combinatorics – Theory and Applications*", East-West Press, New Delhi, 2000.

Peter J. Cameron," *Combinatorics: Topics, Techniques, Algorithms*", Cambridge University Press, United Kingdom, 1st Edition, 1995.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Terrie	No. of	Content Delivery
No.	Горіс	Lectures	Methods
	UNIT – I		
1.1	Introduction	2	Discussion
1.2	The rules of sum and product	3	E-Resources
1.3	permutations	3	Chalk & Talk
1.4	combinations	3	E-Resources
1.5	Distribution of distinct objects	3	Chalk & Talk
1.6	Distributions of non – distinct objects.	4	E-Resources
	UNIT – II		
2.1	Introduction	2	Chalk & Talk
2.2	Generating functions for combinations	3	Chalk & Talk
2.3	Enumerators for permutation	3	Chalk & Talk
2.4	distributions of distinct objects into non – distinct cells	4	E-Resources
2.5	partitions of integer	3	Chalk & Talk
2.6	elementary relations	3	E-Resources
	UNIT – III		
3.1	Introduction	2	Chalk & Talk
3.2	– Linear recurrence relations with constant coefficients	6	E-Resources
3.3	Solution by the technique of generating n functions	6	Chalk & Talk
3.4	Recurrence relations with two indices	4	E-Resources

	UNIT – IV				
4.1	Introduction	4	Chalk & Talk		
4.2	The principle of inclusion and exclusion	5	E-Resources		
4.3	The general formula	5	Discussion		
4.4	derangements,	4	Chalk & Talk		
	UNIT – V				
5.1	Introduction	2	E-Resources		
5.2	Equivalence classes under permutation group	4	Chalk & Talk		
5.3	Equivalence classes of function	3	Chalk & Talk		
5.4	Weight and inventories of functions	3	E-Resources		
5.5	Polya's fundamental theorem	3	Discussion		
5.6	Generalizations of Polya's theorem	3	Chalk & Talk		
	Total	90			

Course Designer

Ms. M. Vijayasankari

Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAE22	Fuzzy sets & Logics	Elective - II	90	5

Nature of Course		Cou	irse Relevance	
Knowledge Oriented	✓	Loc	al	
Skill Oriented	✓	Reg	ional	
Employability Oriented		Nat	ional	
Entrepreneurship Oriented		Glol	bal	\checkmark

Fuzzy sets and Fuzzy logic introduce the concept of uncertainty and fuzziness and deals with the applications in fuzzy systems and fuzzy decision.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

]	No.	Course Outcome	Knowledge Level
(CO1	Define and illustrate the concept of fuzzy sets and crisp	V1 V2 V2 V
	.01	sets	N1,N2,N3,N4
(C O 2	Analyze the axioms and build operations on fuzzy sets	K1,K2,K3
(203	Explain a brief introduction to fuzzy arithmetic concept	K1,K2,K3,K4
	<u>-04</u>	Compare the differences and similarities between Fuzzy	K1 K2 K2 KA K5
	104	sets and classical set theories	N1,N2,N3,N4,N3
	205	Apply rules of inference and infer from various types of	K1 K2 K2 KA K5
	702	fuzzy propositions	N1,N2,N3,N4,N3
K1·	Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	PO5
C01	3	3	1	3	2
CO2	2	3	1	3	3
CO3	3	3	2	2	1
CO4	2	1	1	3	3
CO5	3	3	2	3	3
-Low 2-Medium 3-Stron			3-Strong		

PS01	PSO2	PSO3	PSO4	PSO5
3	1	1	3	3
3	3	1	3	3
1	2	2	2	2
3	3	2	3	3
3	3	2	3	3
	1 3 3 3 3 3 3 3	1301 1302 3 1 3 3 1 2 3 3 3 3	1301 1302 1303 3 1 1 3 3 1 1 2 2 3 3 2 3 3 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1-Low

Syllabus

UNIT I **18** Hours Fuzzy sets - Basic types - Fuzzy sets - Basic concepts - Additional properties of α -cuts –Representation of fuzzy sets. **UNIT II** 18 Hours Extension principle for fuzzy sets – Types of Operations – Fuzzy Complements – Fuzzy numbers. **UNIT III** 18 Hours Linguistic variables - arithmetic operations on intervals - arithmetic operations on fuzzy numbers. **UNIT IV** 18 Hours Fuzzy relation - Crisp versus fuzzy relations - projection and cylindric extensions - Binary fuzzy relations on a single set - Fuzzy equivalence relations. **UNIT V** 18 Hours

Fuzzy logic – Classical logic-An overview – multivalued logic – Fuzzy propositions - Fuzzy quantifiers – Linguistic Hedges – Inference from conditional fuzzy propositions. Inference from quantifier propositions.

Text Books

George Klir, J., and Yuan , B., "Fuzzy sets and Fuzzy logic – Theory and applications".

UNIT I: Chapter 1 – Section-1.3,1.4, Chapter 2 – Section - 2.1,2.2
UNIT II: Chapter 2 - Section 2.3, Chapter 3 – Section -3.1, 3.2, Chapter 4 - Section- 4.1
UNIT III: Chapter 4 - Section 4.2, 4.3 and 4.4
UNIT IV: Chapter 5 - Section 5.1 to 5.5
UNIT V: Chapter 8 – Section 8.1 to 8.6

2-Medium

3-Strong

Reference Books

Ganesh, M., " *Introduction to Fuzzy Sets and Fuzzy Logic*", Prentice-Hall of India, 2015, Hung Nguyen, T., and Elbert Walker, A.," *A First Course in Fuzzy Logic* ", Chapman and Hall/CRC. India, 2006,

Zimmermann, H.J. "*Fuzzy Set Theory and its Applications*" Allied Publishers Ltd., Chennai, 1996.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Topia	No. of	Content Delivery	
No.	lopic	Lectures	Methods	
	UNIT – I			
1.1	Fuzzy sets Basic types	4	E-Resources	
1.2	Fuzzy sets Basic concepts	5	Chalk & Talk	
1.3	Additional properties of α -cuts	4	Chalk & Talk	
1.4	Representation of fuzzy sets.	5	E-Resources	
UNIT – II				
2.1	Extension principle for fuzzy sets	4	Chalk & Talk	
2.2	Types of Operations	4	E-Resources	
2.3	Fuzzy Complements	5	Discussion	
2.4	Fuzzy numbers	5	Chalk & Talk	
	UNIT – III			
3.1	Linguistic variables	5	Chalk & Talk	
3.2	arithmetic operations on intervals	6	Chalk & Talk	
3.3	arithmetic operations on fuzzy numbers	7	E-Resources	
	UNIT – IV			
4.1	Fuzzy relation	3	Discussion	
4.2	Crisp versus fuzzy relations	3	E-Resources	
4.3	projection and cylinderic extensions	4	Chalk and Talk	
4.4	Binary fuzzy relations on a single set	4	Chalk and Talk	
4.5	Fuzzy equivalence relations	4	Discussion	

	UNIT – V					
5.1	Fuzzy logic – Classical logic	3	E-Resources			
5.2	An overview multivalued logic	3	Chalk & Talk			
5.3	Fuzzy propositions	3	Discussion			
5.4	Fuzzy quantifiers	2	Chalk & Talk			
5.5	Linguistic Hedges	3	Chalk & Talk			
5.6	Inference from conditional fuzzy propositions.	4	E-Resources			
	Total	90				

Course Designer

Ms. D. Gowsalya Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC31	Field Theory & Lattices	Core - IX	105	4

Nature of Course		Course Relevance	
Knowledge Oriented	 ✓ 	Local	
Skill Oriented	 ✓ 	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	

The Course deals with methods of finding roots of a polynomial over a field in its extension the constructible real numbers are discussed. The four-square theorem is proved using the properties of finite fields.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	CO1	Recall and construct extension of a given field Explain the fundamental concepts of field extensions.	K1,K2,K3,K4
	CO2	Construct a polygon using just a compass and a ruler.	K1,K2,K3,K4
	CO3	Explain the concept of Galois Theory and the related results.	K1,K2,K3,K4
	CO4	Analyze the theorems on finite division rings	K1,K2,K3,K4,K5
	CO5	Explain the properties of Lattice Theory.	K1,K2,K3,K4,K5
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	2	3	1	2	3
CO2	3	3	1	3	3
CO3	2	3	3	1	3
CO4	3	3	2	3	2
CO5	3	1	2	3	3
1-Low 2-Medium			dium	•	3-Strong

	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	3	3
CO2	2	3	1	2	3
CO3	3	2	2	3	3
CO4	3	3	2	3	2
CO5	3	3	2	3	3
l-Low		•	2-Medium		3-Strong

Syllabus

UNIT I

Fields Extension Fields - The Transcendence of e. Roots of Polynomials - Construction with Straightedge and Compass – More About Roots.

UNIT II

The Elements of Galois Theory - Solvability by Radicals.

UNIT III

Galois Groups over the Rationals Selected Topics Finite Fields Wedderburn's Theorem on Finite Division Rings

UNIT IV

Lattices- partially ordered Sets-Modular lattices-Schreier's theorem.

UNIT V

Decomposition theory for lattices with ascending chain Condition-Independence – complemented lattices – Boolean algebra.

Text Books

Herstein, I. N. "Topics in Algebra", John Wiley and Sons, Reprint 2016.

Gabor Szasz . *Introduction to Lattice Theory*, Third Revised and Enlarged Edition, Academic Press, New York and London.

Nathan Jacobson, "*lectures in Abstract Algebra*", Affiliated East-West Press Pvt. Ltd 1971

Unit I: Book -1: Chapter5 –Section-5.1, 5.5 Unit II: Book-1: Chapter 5 - Section – 5.6, 5.7 Unit III: Book -3 Chapter 5 – Section- 5.87, chapter 7- section- 7.1 – 7.2 Unit IV: Book -3 Chapter 7 Section 7.3 to 7.4 Unit V: Book -3 Chapter 7 Section 7.5 to 7.8

Reference Books

John, B. Fraleigh ., *A First Course in Abstract Algebra*, 3rd Edition, Narosa Publications, Eighth Reprint, 1996.

Joseph Gallian. A., *Contemporary Abstract Algebra*, 8th Edition BROOKS COLE, Cengage Learning, 2013.

21 Hours

21 Hours

21 Hours

21 Hours

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module	Tonic	No. of	Content Delivery
No.	Торіс	Lectures	Methods
	UNIT – I		
1.1	Fields Extension Fields	10	Chalk & Talk
1.2	The Transcendence of e	11	E-Resources
	UNIT – II		
2.1	Roots of Polynomials	8	Discussion
2.2	Construction with Straight edge and	13	Chalk & Talk
	UNIT – III		
3.1	The Elements of Galois Theory	10	E-Resources
3.2	Solvability by Radicals	11	Chalk & Talk
	UNIT – IV		
4.1	Galois Groups over the Rationals	7	Discussion
4.2	Finite Fields Wedderburn's Theorem	7	E-Resources
4.3	Theorem on Finite Division Rings.	7	Chalk & Talk
	UNIT – V		
5.1	Lattices in General- Lattices-The lattice theoretical duality principle	7	Chalk & Talk
5.2	Semi lattices- Lattices as partly ordered sets - Diagrams of lattices, Ideals	7	E-Resources
5.3	Bound elements of a lattice, Atoms an dual atoms - Complements, relative Complements, semi complements.	7	Discussion
	Total	105	

Course Designer

Ms. D. Gowsalya

Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC32	Measure Theory	Core - X	105	4

Nature of Course		Course Relevance		
Knowledge Oriented	\checkmark	Local	\checkmark	
Skill Oriented		Regional		
Employability Oriented	\checkmark	National	\checkmark	
Entrepreneurship Oriented		Global		

The course deals with Lebesque measure, Lebesque integral on bounded sets, General measure spaces and Decomposition theorems

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
	Apply the knowledge gained from concrete cases to a	
C01	general situation by means of going to general measure	K1,K2,K3,K4,K5
	starting from Lebesgue measure.	
CO2	Utilize constructive type proof technique effectively.	K1,K2,K3,K4
	Move sequentially from basic case to required case via all	
CO3	possible in between cases while introducing integration	K1,K2,K3,K4
	for general functions via simple functions.	
CO4	Construct with new functions such as functions of	K1 K2 K2 KA
04	bounded variations an absolutely continuous function.	N1,N2,N3,N4
C05	Summarize the necessity of checking the existence and	K1 K2 K3 K4 K5
05	uniqueness whenever they come across such a situation.	K1,K2,K3,K4,K3
K1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	2	1	3	3
CO2	3	2	3	3	3
CO3	2	3	3	1	2
CO4	3	3	2	3	2
C05	2	1	2	1	3
T		0.14	1.		0.0

1-Low

3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	1	2	3
CO2	2	3	3	2	3
CO3	3	2	2	3	2
CO4	2	3	2	3	2
CO5	3	3	2	3	3
1-Low		2-Me	dium		3-Strong

Syllabus

UNIT I

Lebesgue Measure Introduction -Outer measure - Measurable sets and Lebesgue measure – A non-measurable set – Measurable functions- Little wood's three principles.

UNIT II

The Lebesgue Integral the Riemann Integral –Lebesgue integral of a bounded function over a set of finite measure-The integral of a nonnegative function - The general Lebesgue integral.

UNIT III

Differentiation and Integration - Differentiation of monotone functions-Functions of bounded variation- Differentiation of an integral – Absolute continuity.

UNIT IV

Measure and Integration Measure spaces - Measurable functions – Integration-General convergence theorems-Signed measures – The Radon-Nikodym theorem.

UNIT V

Measure and Outer Measure Outer measure and measurability - The extension theorem - Product measures.

Text Books

Royden. H.L., *"Real Analysis"*, III Edition, Prentice-Hall of India Pvt. Ltd., 2009.
Unit I: Chapter 3- Section1-6
Unit II: Chapter 4-Section 1-4
Unit III: Chapter 5-Section 1-41-4
Unit IV: Chapter 11-Section 1-6

Unit V: Chapter 12 -Section 1, 2, 4

3-Strong

21 Hours

21 Hours

21 Hours

21 Hours

Reference Books

De Barra. G. *Measure Theory and Integration*, New Age International Publishers, 2009.

Paul R. Halmos, *Measure Theory*, Narosa Publishing House New Delhi, springer International Student Ed., 1981.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Tonic	No. of	Content Delivery			
No.	Topic	Lectures	Methods			
	UNIT – I					
1.1	Lebesgue Measure Introduction	3	Chalk & Talk			
1.2	Outer measure	4	E-Resources			
1.3	Measurable sets and Lebesgue measure	4	Discussion			
1.4	A non-measurable set	3	Chalk & Talk			
1.5	Measurable functions	3	E-Resources			
1.6	Little wood's three principles	4	Discussion			
UNIT – II						
2.1	The Lebesgue Integral The Riemann Integral	5	E-Resources			
2.2	Lebesgue integral of a bounded function over a set of finite measure	6	Discussion			
2.3	The integral of a nonnegative function	5	Chalk & Talk			
2.4	The general Lebesgue integral	5	E-Resources			
	UNIT – III					
3.1	Differentiation and Integration	4	E-Resources			
3.2	Differentiation of monotone functions	4	Discussion			
3.3	Functions of bounded variation	4	Chalk & Talk			
3.4	Differentiation of an integral	5	Chalk & Talk			
3.5	Absolute continuity	4	E-Resources			
	UNIT – IV					
4.1	Measure and Integration Measure spaces	3	РРТ			
4.2	Measurable functions	4	PPT			

4.3	Integration	4	PPT
4.4	General convergence theorems	3	Chalk & Talk
4.5	Signed measures	3	E-Resources
4.6	The Radon-Nikodym theorem	4	Discussion
	UNIT – V		
5.1	Measure and Outer Measure Outer measure and measurability	7	E-Resources
5.2	The extension theorem	7	Chalk & Talk
5.3	Product measures	7	Discussion
	Total	105	

Course Designer

Ms. A. Benazir

Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC33	Mathematical Methods	Core - XI	105	4

Nature of Course		Course Relevance	
Knowledge Oriented		Local	
Skill Oriented	✓	Regional	
Employability Oriented	✓	National	
Entrepreneurship Oriented	✓	Global	\checkmark

Basic Knowledge in Calculus and Differential equations.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
C01	Understand and Apply Various transforms and Integral equations to solve problems in all respects	K1,K2,K3,K4
CO2	Recognize and Solve the special cases of Volterra integral equations by the method of resolvent kernel method of successive approximations and by using transforms.	K1,K2,K3,K4,K5
CO3	Understand the relations between the Hankel, Fourier transforms and their applications in evaluating the equations.	K1,K2,K3,K4
CO4	Understand the formulation of variational problems, the variation of functional and its properties.	K1,K2,K3,K4,K5
CO5	Demonstrate and apply the methods in all application problems in day-today life.	K1,K2,K3,K4,K5
K1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	3	2	2	3
CO2	3	3	2	1	3
CO3	2	3	3	1	3
CO4	3	2	2	3	2
C05	2	2	1	3	3
		0.14	1.		0.0

1-Low

3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	3	3	2	2	3	
CO2	2	2	1	2	3	
CO3	3	2	2	3	3	
CO4	3	3	3	1	2	
C05	3	3	2	3	3	

1-Low

Syllabus

UNIT I

2-Medium

3-Strong

21 Hours

Fourier Transforms – Definition - Inversion theorem - Fourier cosine transforms-Fourier sine transforms- Fourier transforms of derivatives-Fourier transforms of some simple functions- Fourier transforms of rational functions-The convolution integral-convolution theorem-Parseval's relation for Fourier transforms-Solution of PDE by Fourier transforms Laplace's equation in Half plane Laplace's Equation in an infinite strip - The Linear diffusion equation on a semi-infinite line The two dimensional diffusion equation

UNIT II

21 Hours

Definition-Elementary properties of Hankel transform- Hankel transforms of derivaties of Functions- Hankel transforms of some elementary Functions-The Parseval's relation for Hankel Transforms-Relation between Fourier and Hankel Transforms-Application of PDE- Axisymmetric Dirichlet Problem for a half space- Axisymmetric Dirichlet Problem for a thick plate.

UNIT III

Types of integral equations-Equation with separable kernel-Fredholm Alternative Approximate method- Volterra integral equations-Classical Fredholm theory-Fredholm's First Second Third theorem.

UNIT IV

Initial value problems- Boundary value problems-Single integral equations-Abel integral equations.

UNIT V

Variation and its properties-Eulers equations-Functional's of the integral forms- Functional dependent on higher order derivatives-Functional dependent on the function of several independent variables-Variational problems in parametric forms.

21 Hours

21 Hours

Text Books

Sneddon. I. N., "*The use of Integral Transforms*", Tata Mc Graw Hill, New Delhi 1974.

Kanwal.R.P., "*Linear Integral Equations Theory and Technique*", Academic press Newyork, 1971.

Elsgolts.L., "*Differential Equations and Calculus of variations*" Mir Publishers, Moscow 1970.

Unit I & Unit II: Book -1 Unit III & Unit IV: Book -2 Unit V: Book -3

Reference Books

Lokenath Debnath Bhatta., "*Integral transforms and their applications*" Taylor and francis London 2007.

Corduneanu.C "*Integral equation and applications*" Cambridge University press 1991.

Weinstock.R., "*Calculus of variations with applications to physics & Engineering*" Mc Graw Hill, Newyork 1952.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module No.	Торіс	No. of Lectures	Content Delivery Methods
	UNIT – I	•	
1.1	Fourier cosine transforms-Fourier sine transforms	3	Chalk & Talk
1.2	Fourier transforms of derivatives- Fourier transforms of some simple functions	4	РРТ
1.3	Fourier transforms of rational Functions- The convolution integral-convolution theorem	4	E-Resources
1.4	Parseval's relation for Fourier transforms- Solution of PDE by Fourier transforms	3	Chalk & Talk
1.5	Laplace's equation in Half plane Laplace's Equation in an infinite strip	3	РРТ
1.6	The Linear diffusion equation on a semi Infinite line The two dimensional diffusion equation.	4	E-Resources

	UNIT – II		
2.1	Elementary properties of Hankel transform - Hankel transforms of derivaties of Functions - Hankel transforms of some elementary Functions	6	Discussion
2.2	The Parseval's relation for Hankel transforms-Relation between Fourier and Hankel transforms	6	Chalk & Talk
2.3	Axisymmetric Dirichlet Problem for a half space	4	E-Resources
2.4	Axisymmetric Dirichlet Problem for a thick plate.	5	Discussion
	UNIT – III		
3.1	Types of integral equations	4	E-Resources
3.2	Equation with separable kernel	4	Chalk & Talk
3.3	Fredholm Alternative Approximate method	4	Discussion
3.4	Volterra integral equations-Classical Fredholm theory	5	Chalk & Talk
3.5	Fredholm's First Second Third theorem.	4	E-Resources
	UNIT – IV		
4.1	Initial value problems	7	Discussion
4.2	Boundary value problems-Single integral equations	7	E-Resources
4.3	Abel integral equations.	7	Chalk & Talk
	UNIT – V		
5.1	Variation and its properties - Eulers equations - Functional's of the integral forms	7	E-Resources
5.2	Functional dependent on higher order derivatives-Functional dependent on the function of several independent variables	7	Chalk & Talk
5.3	Variational problems in parametric forms.	7	Discussion
	Total	105	

Course Designer Mr. M. Vignesh Babu Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAE31	Number Theory	Elective -III	90	4

Nature of Course		Cou	irse Relevance	
Knowledge Oriented	\checkmark	Loc	al	
Skill Oriented	\checkmark	Reg	ional	
Employability Oriented	✓	Nat	ional	\checkmark
Entrepreneurship Oriented		Glo	bal	\checkmark

The course provides the basic concepts of Numbers such as Divisibility, Congruences, Quadratic residys and some arithmetic functions.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	CO1	Classify in the theory of integer from the list of axioms	K1 K2 K2 KA
	COI	and explore some research problem in number theory.	N1,N2,N3,N4
	CO2	Solve problems in Number Theory.	K1,K2,K3,K4
	03	Find the greatest common divisor using the Euclidean	K1 K2 K2 KA
	03	algorithm.	N1,N2,N3,N4
	<u> </u>	Recognize various arithmetical functionssolve systems	K1 K2 K2 KA K5
	UU4	of linear congruence's	N1,N2,N3,N4,N3
	CO5	Analyze &Explain reciprocity law	K1,K2,K3,K4,K5
K	l-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
CO1	2	2	2	3	3
CO2	3	2	3	2	3
CO3	3	1	3	1	3
CO4	3	2	3	3	2
CO5	2	2	2	2	3
1-Low		2-Me	dium		3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	3	3	2	3	2	
CO2	2	2	3	3	3	
CO3	3	2	3	3	2	
CO4	2	3	3	2	3	
C05	3	3	2	2	3	
-						

1-Low

Syllabus

UNIT I

2-Medium

3-Strong

18 Hours

Introduction, divisibility, Greatest Common divisor, prime numbers, the fundamental t theorem of arithmetic. The series of reciprocals of the primes. The Euclidean algorithm, the GCD of more than two numbers, the Mobius function, the Euler totient function, a relation connecting μ and \emptyset , A product formula for \emptyset (*n*). The Dirichlet product of arithmetical functions, Dirichlet inverses and the Mobius inversion formula, the Mangoldt function, Multiplicative functions, multiplicative functions and Dirichlet multiplication principles.

UNIT II

18 Hours

Liouville"s functions, the divisor function. The Bell series of an arithmetical function generalized convolutions, Formal Power series. The bell series and Dirichlet multiplication. Derivatives of arithmetic function. The selberg identity, big oh notation, Asymptotic equality of functions Euler's summation formula, some elementary asymptotic formulas. The average order of d (n), the average order of the divisior functions σ_{α} (*n*), the average order of the divisior functions of lattice points visible from the origin, the average order of σ_{α} (*n*) and \wedge (*n*), the partial sums of a Dirichlet product.

UNIT III

18 Hours

Introduction to Chebyshev's function - Definition, basic properties of congruences, residue classes and complete residue system, Linear congruences, reduced residue system and the Euler – Fermat theorem. Ploynomial congruences modulo p, Lagrange"s theorem, application of Lagrange"s theorem.

UNIT IV

Simultaneous linear congruences. The Chinese remainder theorem. Applications of Chinese remainder theorem. Polynomial congruences with prime power moduli. The principle of cross classification. A decomposition property of reduced residue systems, Quadratic residuces, Legendre"s symbol and its properties, Evaluation of (-1/p) and (2/p) Gauss Lemma.

UNIT V

18 Hours

The quadratic reciprocity Law, application of the quadratic reciprocity law, the Jacobi Symbol. Gauss Sums and the quadratic reciprocity law. The reciprocity law for quadratic Gauss Sums.

Text Books

Apostol. T. M "Introduction to Analytic Number Theory"

UNIT – I: Chapter 1-section 1.1-1.8 and chapter 2 – section 2.1 -2.10 UNIT – II: Chapter 2-section 2.1-2.19 and chapter 3 – section 3.1 -3.12 UNIT –III: Chapter 4-section 4.1-4.2 and chapter 5 – section 5.1 -5.6 UNIT – IV: Chapter 5-section 5.7-5.11 and chapter 9 – section 9.1 -9.4 UNIT –V: Chapter 9-section 9.5-9.10

Reference Books

Niven and Zuckerm "*Introduction to the theory of Numbers*" David Burton.M" *Elementry Number Theory*"

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module No.	Торіс	No. of Lectures	Content Delivery Methods		
UNIT – I					
1.1	Introduction, divisibility, Greatest Common divisor, prime numbers, the fundamental t theorem of arithmetic.	4	Discussion		
1.2	The series of reciprocals of the primes. The Euclidean algorithm.	3	E-Resources		

1.3	the GCD of more than two numbers, the Mobius function, the Euler totient function, a relation connecting μ and \emptyset , A product formula for \emptyset (n).	4	Chalk & Talk		
1.4	The Dirichlet product of arithmetical functions, Dirichlet inverses and the Mobius inversion formula, the Mangoldt function, Multiplicative functions.	4	E-Resources		
1.5	Multiplicative functions and Dirichlet multiplication principles.	3	Chalk & Talk		
	UNIT – II				
2.1	Liouville"s functions, the divisor function. The Bell series of an arithmetical function generalized convolutions, Formal Power series. The bell series and Dirichlet multiplication.	4	Chalk & Talk		
2.2	Derivatives of arithmetic function. The selberg identity, big oh notation, Asymptotic equality of functions Euler's summation formula, some elementary asymptotic formulas.	4	E-Resources		
2.3	The average order of d (n), the average order of the divisior functions $\sigma\alpha$ (n), the average order of \emptyset (n).	3	Discussion		
2.4	An application to the distribution of lattice points visible from the origin, the average order of $\sigma\alpha$ (n) and \wedge (n), the partial sums of a Dirichlet product.	4	Chalk & Talk		
2.5	Application to μ (n) and \wedge (n), another identity for the partial sums of a Dirichlet product.	3	E-Resources		
UNIT – III					
3.1	Introduction to Chebyshev's function - Definition, basic properties of congruences, residue classes and complete residue system.	7	Chalk & Talk		
3.2	Linear congruences, reduced residue system and the Euler – Fermat theorem.	5	E-Resources		

Ployn	omial congruences modulo p,				
3.3 Lagra	nge"s theorem, application of	6	Chalk & Talk		
Lagra	nge"s theorem.				
UNIT – IV					
Simul	caneous linear congruences. The				
4.1 Chines	se remainder theorem. Applications	5	Chalk & Talk		
of Chi	nese remainder theorem.				
Polyno	omial congruences with prime				
4.2 power	moduli. The principle of cross	5	E-Resources		
classif	ication.				
A dec	composition property of reduced				
residu	e systems, Quadratic residuces,				
4.3 Legen	dre"s symbol and its properties,	8	Discussion		
Evalua	tion of (-1/p) and (2/p) Gauss				
Lemm	a.				
UNIT – V					
The qu	adratic reciprocity Law, application				
5.1 of the	quadratic reciprocity law, the Jacobi	9	E-Resources		
Symbo	ol.				
Gauss	Sums and the quadratic reciprocity				
5.2 law. 7	The reciprocity law for quadratic	9	Chalk & Talk		
Gauss	Sums.				
	Total	90			

Course Designer Ms. D. Gowsalya Assistant Professor of Mathematics
Course Code	Course Title	Category	Total Hours	Credits
20PMAE32	Cryptography	Elective -III	90	4

Nature of Course		Course Relevance	
Knowledge Oriented		Local	
Skill Oriented 🖌		Regional	
Employability Oriented	✓	National	
Entrepreneurship Oriented		Global	\checkmark

To provide a thorough knowledge about the cryptography and network security.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge
		Level
CO1	Recall the fundamentals of cryptography	K1
CO 2	Demonstrate standard cryptographic algorithms used to	K1 K2 K2 KA
02	analyze confidentiality, integrity and authenticity.	K1,K2,K3,K4
CO 2	List and Identify the security issues in the network, key	V1 V2 V2
05	distribution and management schemes	N1,N2,N3
CO4	Explain in detail about Data encryption standard (DES)	K1 K2
04	Structure	N1,N2
CO5	Analyze the Advanced Encryption standard (AES)	K1,K2,K3,K4
1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	2	1	3	3
CO2	2	3	3	3	3
CO3	2	3	3	2	2
CO4	2	2	2	3	2
CO5	2	1	2	1	3
1-Low		2-Mo	dium	•	2-Strong

1-Low

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	1	2	32
CO2	2	2	2	2	3
CO3	3	2	2	3	2
CO4	3	3	2	2	2
C05	3	3	2	3	2
-					

1-Low

Syllabus

UNIT I

Introduction: Security goals – Cryptographic attacks – Services and mechanism – Techniques. Mathematics of Cryptography: Integer arithmetic – Modular arithmetic – Matrices– Linear congruence. Principles.

UNIT II

Traditional symmetric –Key ciphers: Introduction–Substitution ciphers-Transposition ciphers – Stream and block ciphers.

UNIT III

Mathematics of symmetric – Key cryptography: Algebraic structures – GF (2*n*) Fields Introduction to modern symmetric – Key ciphers: Modern block ciphers – Modern stream ciphers.

UNIT IV

Data Encryption Standard (DES): Introduction – DES structure – DES analysis –Security of DES – Multiple DES (Conventional Encryption Algorithms) – Examples of block ciphers influenced by DES.

UNIT V

V 18 Hours Advanced Encryption Standard (AES): Introduction – Transformations – Key expansion – The AES Ciphers – Examples – Analysis of AES.

Text Books

Behrouz Forouzan A and Debdeep Mukhopadhyay, *"Cryptography and Network Security*" McGraw Hill Education (India) Private Limited New Delhi, 2nd Edition, 2013.

Unit I : Chapter 1-Section -1.1-1.4, Chapter 2-Section -2.1-2.4 Unit II: Chapter -3-Section -3.1-3.4 Unit III: Chapter -4-Section -4.1-4.2, Chapter 5, Section -5.1-5.2 Unit IV: Chapter -6-Section -6.1-6.6 Unit V: Chapter -7-Section -7.1-7.6

2-Medium

3-Strong

18 Hours

18 Hours

18 Hours

Reference Books

Atul Kahate, "*Cryptography and Network Security*" McGraw Hill Education(India) Private Limited, New Delhi, Third Edition, 2014.

Bruce Schneier, "*Applied Cryptography: Protocols, Algorithms and Source code in C*", Wiley India New Delhi, 2nd Edition, 2012.

Stallings, "*Cryptography and Network Security*,": Principles and Practice, Pearson Education, New Delhi, India, Sixth Edition, 2013,.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	odule		Content Delivery	
No.	Горіс	Lectures	Methods	
	UNIT – I			
11	Introduction: Security goals –	6	Discussion	
1.1	Cryptographic attacks	0	Discussion	
	Services and mechanism – Techniques.			
1.2	Mathematics of Cryptography: Integer	6	E-Resources	
	arithmetic			
13	Modular arithmetic – Matrices– Linear	6	Chally & Tally	
1.5	congruence. Principles.	0	CHAIK & TAIK	
	UNIT – II			
2.1	Traditional symmetric – Key ciphers	4	Chalk & Talk	
2.2	Introduction-Substitution ciphers	5	E-Resources	
2.3	Transposition ciphers	5	Discussion	
2.4	Stream and block ciphers.	4	Chalk & Talk	
	UNIT – III			
2.1	Mathematics of symmetric – Key	6	Chally & Tally	
5.1	cryptography	U	GIIAIK & TAIK	
2.2	Algebraic structures – GF (2n) Fields	6	E Docourcos	
5.2	Introduction to modern	Ö	E-Resources	

3.3	Symmetric – Key ciphers: Modern block ciphers – Modern stream ciphers.	6	Chalk & Talk
	UNIT – IV		
4.1	DataEncryptionStandard(DES):Introduction – DES structure	5	Chalk & Talk
4.2	DES analysis –Security of DES – MultipleDES (Conventional EncryptionAlgorithms)	8	E-Resources
4.3	Examples of block ciphers influenced by DES.	5	Discussion
	UNIT – V		
5.1	Advanced Encryption Standard (AES): Introduction – Transformations	9	E-Resources
5.2	Key expansion – The AES Ciphers – Examples – Analysis of AES.	9	Chalk & Talk
	Total	90	

Course Designer Ms. M. Vijayasankari Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC41	Topology	Core – XII	90	5

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented	✓	Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	

Topology developed as a field of study out of geometry and set theory, through analysis of concepts as space, dimension, and transformation the course emphasize an introduction to theory of topological spaces and focus on selected types of topological spaces.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge
		course outcome	Level
	01	Recall and construct various topologies on Sets and	K1 K2 K3
		compare them	11,112,113
	CO2	Define basic and make use of bases to generate topology	K1 K2 K2 KA K5
	602	and justify Connectedness in topological spaces	N1,N2,N3,N4,N3
	CO3	Classify and analyze the nature of compact Topological	V1 V2 V2 VA
	603	spaces in particular on Real line	K1,K2,K3,K4
	CO4	Define and Categorize separation axioms on different	V1 V2 V2 VA
	LU4	topological spaces	K1,K2,K3,K4
	COE	Interpret and extend the metrizable concepts of	
	203	topological spaces	N1,N2,N3,N4,N3
K 1	-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	PO3	P04	P05
C01	3	3	1	3	1
CO2	3	3	1	2	3
CO3	2	3	2	3	2
CO4	3	2	2	1	3
C05	3	3	2	3	1

	PS01	PSO2	PSO3	PSO4	PSO5
C01	2	2	3	3	2
CO2	2	2	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	3
C05	2	1	3	2	2
1-Low 2-Medium			dium		3-Strong

1-Low

Syllabus

UNIT I

Topological spaces – Basis for a topology – the order topology – the product topology on XxY. The sub space topology – closed sets and limit Points – continuous functions – the product topology.

UNIT II

The Metric topology-connected spaces-connected spaces on a real line.

UNIT III

Compact spaces – compact sub spaces of the real line – Limit point compactness – Local compactness.

UNIT IV

Countability axioms – the separation axioms–normal spaces.

UNIT V

18 Hours

18 Hours

18 Hours

18 Hours

18 Hours

The Urysohn Lemma – the Urysohn Metrization theorem–Tietze extension theorem The Tychonoff theorem.

Text Books

Munkres, James R., *"Topology*", Prentice-Hall of India Private Ltd., NewDelhi, 2nd Edition.

UNIT I: chapter-2 -sections: 12-19 UNIT II: chapter-2 -sections20 and chapter-3-sections: 23,24 UNIT III: chapter-3- sections26 -29 UNIT IV: chapter-4- sections30 -32 UNIT V: chapter-4- sections 33-35 and chapter5sections 37

Reference Books

Chandra sekhara Rao, K., "*Topology*", Narosa Publishing House, NewDelhi,2012. Chatterjee, D., "*Topology General & Algebraic*", New Age International. Chennai, 2007.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Course Contents and Lecture Schedule

Module		No. of	Content Delivery			
No.	Торіс	Lectures	Methods			
	UNIT - I					
1.1	Topological spaces - Basis for a topology	1	Chalk & Talk			
1.2	The order topology - The product topology on XxY.	2	E-Resources			
1.3	The subspace topology - Closed sets and limit Points.	3	Discussion			
1.4	Continuous functions - The product topology.	4	Chalk &Talk			
	UNIT - II					
2.1	The Metric topology	5	Discussion			
2.2	Connected spaces	6	Chalk & Talk			
2.3	Connected spaces on are a real line.	7	E-Resources			
	UNIT - III					
3.1	Compact spaces	3	E-Resources			
3.2	Compact subspaces of their real line	5	Chalk & Talk			
3.3	Limit point compactness	5	Discussion			
3.4	Local compactness	5	Chalk & Talk			
	UNIT - IV					
4.1	Countability axioms	6	Discussion			
4.2	The separation axioms	6	E-Resources			
4.3	Normal spaces.	6	Chalk & Talk			
	UNIT - V					
5.1	The Urysohn Lemma	3	E-Resources			
5.2	The Urysohn Metrizationtheorem	5	Chalk & Talk			
5.3	Tietze extension theorem	5	Discussion			
5.4	The Tychonoff theorem.	5	Chalk & Talk			
	Total	90				

Course Designer Ms. M. Vijayasankari Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC42	Functional Analysis	Core – XIII	90	5

Nature of Course		Course Relevance	
Knowledge Oriented	✓	Local	
Skill Oriented	✓	Regional	
Employability Oriented		National	✓
Entrepreneurship Oriented		Global	 ✓

The course provides a firm grounding in the theory and techniques of functionalAnalysis.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No.	Course Outcome	Knowledge Level
CO1	Develop the skills in analyzing the basic structure of	K1 K2 K3
COI	Banach spaces	N1,N2,N3
CO2	Recall the results in Banach space sand Hilbert spaces	K1,K2,K3,K4
CO3	Apply Normed space theory to prove Hahn-Banach	K1 K2 K3 KA
05	theorem	N1,N2,N3,N 1
CO4	Demonstrate the fundamentals of functional analysis	K1,K2,K3,K4,K5
CO5	Explain the operators and find the spectrum of operators	K1,K2,K3,K4,K5
K1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	2	3	3	2
CO2	3	2	2	3	2
CO3	3	2	3	3	2
CO4	3	2	3	3	3
C05	3	2	3	3	3
Low	•	2 Mo	dium	-	2 Strong

1-Low

2-Medium

	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	1	3	2
CO3	3	2	2	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
l-Low		2-Me	dium	•	3-Strong

1-Low

Syllabus

UNIT I

Banach spaces: Definition and examples – Continuous Linear transformations - The Hahn Banach theorem.

UNIT II

The Natural Imbedding of N in N** - The open mapping theorem - The Conjugate of an operator.

UNIT III

Hilbert Spaces: The definition and some simple properties -orthogonal complements – Ortho normal sets–The conjugate space H*.

UNIT IV

The adjoint of an operator - Self adjoint operators - Normal and Unitary operators - Projections.

UNIT V

Finite Dimensional Spectral Theory-Matrices -Determinants and the spectrum of an operator- The spectral theorem.

Text Books

Simmons, G.F., "Introduction to Topology and Modern Analysis", Tata McGraw Hill.

UNIT I: chapter -9 -sections: 46 -48 UNIT II: chapter- 9-sections49-51 UNIT III: chapter-10 -sections 52-55 **UNIT IV:** chapter-10 -sections56-59 **UNIT V**: chapter-10-sections60-62

Reference Books

Limaye.B.V.," *Functional Analysis*", Newage international(P)Ltd, NewDelhi,2002.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

18 Hours

18 Hours

18 Hours

18 Hours

Teaching aids

Black Board, LCD Projector

Module No.	Торіс	No. of Lectures	Content Delivery Methods		
	UNIT - I				
1.1	Banach spaces: Definition and examples	6	Chalk & Talk		
1.2	Continuous Linear transformations	6	E-Resources		
1.3	The Hahn Banach theorem.	6	Discussion		
	UNIT - II				
2.1	The Natural Imbedding of N in N**	6	Discussion		
2.2	The open mapping theorem	6	Chalk & Talk		
2.3	The Conjugate of an operator.	6	E-Resources		
UNIT - III					
3.1	Hilbert Spaces :The definition and some simple properties	6	E-Resources		
3.2	Orthogonal complements	6	Chalk & Talk		
3.3	Ortho normal sets	6	Discussion		
	UNIT - IV				
4.1	The adjoint of an operator	4	Discussion		
4.2	Self adjoint operators	4	E-Resources		
4.3	Normal and Unitary operators	5	Chalk & Talk		
4.4	Projections	5	Chalk & Talk		
	UNIT – V				
5.1	Finite Dimensional Spectral Theory	5	E-Resources		
5.2	Matrices	3	Chalk & Talk		
5.3	Determinants and the spectrum of an operator	5	Discussion		
5.4	The spectral theorem	5	Chalk & Talk		
	Total	90			

Course Code	Course Title	Category	Total Hours	Credits
20PMAC43	Optimization Techniques	Core – XIV	90	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented		Regional	
Employability Oriented	✓	National	\checkmark
Entrepreneurship Oriented	✓	Global	✓

The course deals with the application of analytical methods such as inventory models, Shortest path problems, queueing models and help to solve decision making problems.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No	Course Outcome	Knowledge
	NU.	course outcome	Level
		Recall some basic principles of optimization techniques	
	CO1	and solve shortest path problems, Maximal flow	K1,K2,K3
		problems, CPM and PERT problems.	
	CO2	Analyze the relationship between exponential and	K1 K2 K3 K1
	02	Poisson distribution	K1,K2,KJ,K T
	CO3	Analyze and solve different models of queueing theory	V1 V2 V2 VA
	603	problems	K1,K2,K3,K4
	CO4	Summarize game theory and decision Analysis principles	
	U 04	and solve some practical problems	K1,K2,K3,K4,K3
	CO5	Interpret the principle of non-linear problems.	K1,K2,K3,K4,K5
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	3	1	2	2
CO2	3	2	1	2	3
CO3	2	3	2	2	2
CO4	3	2	2	2	3
C05	3	3	2	3	2
		0.14			0.0

1-Low

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	1	3	3
CO2	3	2	1	3	3
CO3	3	2	2	3	3
CO4	3	3	2	3	3
CO5	2	1	2	3	2
1-Low		2-Me	dium	•	3-Strong

_ _0..

Syllabus

UNIT I

Scope of network applications, network definitions, minimal spanning tree algorithm, shortest route Problem, Maximal flow model, minimum cost capacitated flow problem CPM and PERT.

UNIT II

Why study Queues? Elements of queueing models. Role of exponential distribution, pure birth and death models, relationship between exponential and Poisson distributions, Generalized Poisson queueing model.

UNIT III

Specialized Poisson queues, (M/M/1) Pollaczek –khintchine (P.K) formula, other queueing models, queueing decision models.

UNIT IV

Game Theory: Optimal solution of two person zero sum games-solution of mixed.

UNIT V

Unconstrained problems, constrained problems, Unconstrained non-linear algorithms, constrained algorithms.

Text Books

Taha, H.A.," *Operation Research– An introduction*", prentice–Hallof India–PvtLtd- VI Edition, 1997.

UNIT I: chapter- 6sections: 6.1-6.8 UNIT II: chapter 17 sections:17.1 -17.5 UNIT III: chapter-17sections17.6-17.10 UNIT IV: chapter-14 sections:14. 5.1-14.5.2 UNIT V: chapter-20, 21 sections:20.1-20.4

18 Hours

18 Hours

18 Hours

18 Hours

Reference Books

Kanti Swarap, Gupta, P.K, Mon Mohan, "*Operation research"* Thoroughly Revised 12th Edition Prof Sundaresan, V., Ganapathy Subramanian K.s., Ganesan, K., *"Resource*"

Management Techniques "(Operation Research) A. R. publicatons.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Tonic	No. of	Content Delivery
No.	Topic	Lectures	Methods
	UNIT – I		
1.1	Scope of network applications, network definitions	6	Chalk & Talk
1.2	Minimal spanning tree algorithm, shortest route Problem	6	РРТ
1.3	Maximal flow model, minimum cost capacitated flow problem CPM and PERT.	6	E-Resources
	UNIT – II		
2.1	Why study Queues? Elements of queueing models.	4	Discussion
2.2	Role of exponential distribution, pure birth and death models	5	Chalk & Talk
2.3	relationship between exponential and Poisson distributions		E-Resources
2.4	Generalized Poisson queueing model.	4	Discussion
	UNIT – III		
3.1	Specialized Poisson queues, (M/M/1) Pollaczek	6	E-Resources
3.2	khintchine (P.K) formula, other queueing models	6	Chalk & Talk
3.3	Queueing decision models.	6	Discussion
	UNIT – IV		
4.1	Game Theory: Optimal solution of two person zero sum games	10	Discussion
4.2	Solution of mixed.	8	E-Resources

	UNIT – V						
5.1	Unconstrained problems	5	E-Resources				
5.2	Constrained problems	5	Chalk & Talk				
5.3	Unconstrained non-linear algorithms	4	Discussion				
5.4	Constrained algorithms	4	Chalk & Talk				
	Total	90					

Course Designer Mr. M. Vignesh Babu

Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAC44	Project- Viva- Voce	Core - XV	105	5

Nature of Course		Course Relevance	
Knowledge Oriented	\checkmark	Local	
Skill Oriented 🖌		Regional	
Employability Oriented	✓	National	
Entrepreneurship Oriented		Global	\checkmark

The research in Mathematics describes the use of symbols and models as embodiments of mathematical concepts and objects in instructional practice, design and theory, to explorations in semiotics as a central field of interest.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

	No.	Course Outcome	Knowledge Level
	CO1	Identify literature review to carry out the project work.	K1,K2,K3
	CO2	Analyze characteristic and properties of two and three dimensional geometric shapes and develop mathematical arguments about geometric relationships	K1,K2,K3,K4
	CO3	Discover the project work in abstract and applied Mathematics.	K1,K2,K3,K4
	CO 4	Analyze the existing results and frame new concepts with illustrations	K1,K2,K3,K4
	CO5	Assess the project to meet the challenges at society level	K1,K2,K3,K4,K5
K	1-Knov	vledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	P02	P03	P04	P05
CO1	2	3	2	3	3
CO2	3	2	3	3	3
CO3	2	2	3	2	3
CO4	3	3	2	3	1
C05	2	1	2	3	3
-Low		2-Me	dium	·	3-Strong

	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	3	3	3	1
CO2	3	2	3	2	3
CO3	2	3	3	2	2
CO4	3	2	2	3	3
C05	2	3	3	3	1
-		0 J <i>r</i>			~ ~

1-Low

2-Medium

3-Strong

Marks

External Examiner: Viva: 20

External Examiner: Evaluation of Project: 40

Internal Examiner: Evaluation of Project: 40

100

Course Code	Course Title	Category	Total Hours	Credits
20PMAE41	Fluid Dynamics	Elective –IV	75	5

Nature of Course	Course Relevance		
Knowledge Oriented	✓	Local	
Skill Oriented		Regional	
Employability Oriented		National	
Entrepreneurship Oriented		Global	

The course identifies and obtains the values of fluid properties and relates and the principles of continuity, momentum and energy as applied to fluid motions.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No	Course Outcome	Knowledge	
NU.	course outcome	Level	
CO1	Recall the Bernoulli's theorem	K1,K2,K3,K4	
CO2	Demonstrate the steady motion	K1,K2,K3,K4	
CO3	Develope the Basic singularities	K1,K2,K3,K4	
CO4	Analyze the stress tensor and explain Navier stokes		
604	equation	KI,KZ,KS,K T ,KS	
C05	Find Blasius solutions	K1,K2,K3,K4,K5	
K1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate	

Mapping of CO with PO

	P01	PO2	P03	P04	PO5
C01	3	3	1	3	3
CO2	3	3	1	2	3
CO3	2	2	2	3	3
CO4	3	3	2	3	3
C05	3	3	2	3	3

1-Low

2-Medium

- F F - O -								
	PSO1	PSO2	PSO3	PSO4	PSO5			
C01	3	3	1	3	3			
CO2	3	3	1	3	3			
CO3	2	3	2	2	3			
CO4	3	3	2	3	3			
CO5	2	3	2	3	3			
-Low 2-Medium					3-Strong			

1-Low

Syllabus

UNIT I

Inviscid Theory: Introductory Notions, velocity: Streamlines and paths of the particles- streamtubes and filaments - fluid body- Density - pressure -Bernoulli's theorem, differentiation with respect to time- Equation of continuity - Boundary conditions: kinematical and physical - Rate of change of linear momentum – The equation of motion of an inviscid fluid.

UNIT II

Euler's momentum theorem - conservative forces - Lagrangian form of the equation of motion – steady motion – the energy equation – rate of change of circulation - vortex motion - Permanence of vorticity.

UNIT III

Two dimensional motion: Two dimensional functions stream function velocity potential - complex potential - Indirect approach - Inverse function, Basic Singularities: source - Doublet - vortex - Mixed flow -Method of images: Circle theorem – flow past circular cylinder with circulation. The aerofoil : Blasius's theorem-lift force.

UNIT IV

Viscous Theory: The equations of motion for viscous flow. The stress tensor - The Navier - stokes equations - vorticity and circulation in a viscous fluid. Flow between parallel flat plates: coquette flow, plane poiseuille flow steady flow in pipes: Hagen Poiseuille flow.

UNIT V

15 Hours

15 Hours

Boundary Layer Theory : Boundary Layer concept – Boundary layer equations in two dimensional flow – Boundary layer along a flat plate: Blasius solution - Shearing stress and boundary layer thickness -Momentum integral theorem for the boundary layer: The Von karman integral relation by momentum law

15 Hours

3-Strong

15 Hours

Text Books

L.M. Milne Thomas, Dover, "*Theoretical Hydrodynamics*", 1996. N.Curle and H.J.Davies "*Modern Fluid Dynamics volume-1* " Dvan Nostrand Company ltd, London 1968.

Reference Books

S.W Yuan Prentice," *Fountations of fluid Mechanics*", New Delhi, 1988.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Topia	No. of	Content Delivery					
No.	Горіс	Lectures	Methods					
UNIT – I								
1.1	Inviscid Theory: Introductory Notions, velocity: Streamlines and paths of the particles	3	Discussion					
1.2	Streamtubes and filaments – fluid body- Density – pressure – Bernoulli's theorem,	3	E-Resources					
1.3	Differentiation with respect to time- Equation of continuity – Boundary	3	Chalk & Talk					
1.4	Conditions: kinematical and physical – Rate of change of linear momentum	3	E-Resources					
1.5	The equation of motion of an inviscid fluid.	3	Chalk & Talk					
	UNIT – II							
2.1	Euler's momentum theorem – conservative forces	4	Chalk & Talk					
2.2	Lagrangian form of the equation of motion – steady motion	4	Chalk & Talk					
2.3	Tthe energy equation – rate of change of circulation	4	Chalk & Talk					
2.4	Vortex motion – Permanence of vorticity.	3	Chalk & Talk					

	UNIT – III						
3.1	Twodimensionalmotion:Twodimensional functions stream	3	Chalk & Talk				
3.2	function – velocity potential – complex potential – Indirect approach - Inverse function	4	E-Resources				
3.3	Basic Singularities: source – Doublet – vortex – Mixed flow – Method of images:	3	Chalk & Talk				
3.4	Circle theorem – flow past circular cylinder with circulation.	3	E-Resources				
3.5	The aerofoil: Blasius's theorem- lift force.	2	Discussion				
	UNIT – IV						
4.1	Viscous Theory: The equations of motion for viscous flow. The stress tensor	5	Chalk & Talk				
4.2	The Navier – stokes equations – vorticity and circulation in a viscous fluid.	5	E-Resources				
4.3	Flow between parallel flat plates: coquette flow, plane poiseuille flow steady flow in pipes: Hagen Poiseuille flow.	5	Discussion				
	UNIT – V						
5.1	Boundary Layer Theory : Boundary Layer concept – Boundary layer equations in two dimensional flow – Boundary layer along a flat plate: Blasius solution	8	E-Resources				
5.2	Shearing stress and boundary layer thickness – Momentum integral theorem for the boundary layer: The Von karman integral relation by momentum law.	7	Chalk & Talk				
	Total	75					

Course Designer Ms. D. Gowsalya Assistant Professor of Mathematics

Course Code	Course Title	Category	Total Hours	Credits
20PMAE42	Modern Applied Algebra	Elective –IV	75	5

Nature of Course	
Knowledge Oriented	\checkmark
Skill Oriented	✓
Employability Oriented	✓
Entrepreneurship Oriented	

The course deals with the graph theoretical concepts connectivity, planarity and distance that help to model real life situations.

Course Outcomes (CO)

On the successful completion of the course the students will be able to

No		Course Outcome	Knowledge
INU.	course outcome	Level	
	CO1	Explain about the shortest path problem	K1,K2,K3,K4
	CO2	Construct the reliable communication networks	K1,K2,K3,K4
	CO3	Solve the Assignment problems	K1,K2,K3,K4,K5
	CO4	Explain and Analyze the time tabling problems	K1,K2,K3,K4
COF		Define dominating sets in graphs & Explaining social	K1 K2 K2 KA K5
605	networks	K1,K2,K3,K4,K3	
K	1-Knov	wledge K2-Understand K3-Apply K4- Analyse	K5- Evaluate

Mapping of CO with PO

	P01	PO2	P03	P04	P05
C01	3	3	3	2	2
CO2	3	2	2	2	3
CO3	2	3	2	2	2
CO4	3	2	3	3	3
C05	3	3	3	3	2
1 Low 2 Modium				2-Strong	

1-Low

2-Medium

	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	2
CO2	3	2	3	3	2
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
1-Low		2-Me	dium		3-Strong

Syllabus

UNIT I

Finite State Machines - Introduction, Binary devices and States, Finite -State machines, Covering and equivalence, Equivalence states, A minimization procedure, Turing machines, Incompletely specified machines - Relations between states - a minimization procedure.

UNIT II

Programming Languages-Introduction, Arithmetic expressions, Identifiers: assignment statements, Arrays, FOR statements, Block structure in ALGOL, The ALGOL grammar, Evaluating arithmetic statements, Compiling arithmetic expressions.

UNIT III

Boolean Algebras - Introduction, Order, Boolean polynomials, Block diagrams forgetting networks, Connections with logic, Logical capabilities of ALGOL, Boolean applications, Boolean sub algebras, Disjunctive normal form, direct products; morphism.

UNIT IV

Computer Design - Introduction, Optimization and Optimization, Computerizing Optimization, Logic design, NAND gates and NOR gates, the minimization problem, Procedure for deriving prime implicates, Consensus taking, Flip-flops, Sequential machine.

UNIT V

Binary Group Codes Introduction, Encoding and decoding, Block codes, Matrix encoding techniques, Group codes, Decoding tables, Hamming codes.

2-Medium

3-Strong

15 Hours

15 Hours

15 Hours

15 Hours

Text Books

"CBS Publishers and Distributors", NewDelhi, 1987.

UNIT I: chapter- 3 sections: 3.1 to 3.9 UNIT II: chapter -4 sections: 4.1 to 4.9 UNIT III: chapter- 5 sections: 5.1 to 5.10 UNIT IV: chapter -6 sections: 6.1 to 6.10 UNIT V: chapter- 8 sections: 8.1 to 8.7

Reference Books

John Hopcroft Jeffery.E., Ullman.," *Introduction to AutomataTheory"*, Languages, and Computation, Narosa, 19th Reprint, 2002.

Bhattacharya P.B, Jain.S. K and., Nagpaul.R." *Basic Abstract Algebra"*, Published by Cambridge University Press, Second edition.

Pedagogy

Chalk & Talk, E-Resources, Group Discussion

Teaching aids

Black Board, LCD Projector

Module	Tonic	No. of	Content Delivery					
No.	Торіс	Lectures	Methods					
UNIT – I								
1.1	Finite State Machines - Introduction, Binary devices and States	4	Discussion					
1.2	Finite - State machines, Covering and equivalence, Equivalence states	3	E-Resources					
1.3	A minimization procedure, Turing machines, Incompletely specified machines	3	Chalk & Talk					
1.4	Relations between states – a minimization procedure.	5	E-Resources					
	UNIT – II							
2.1	Programming Languages-Introduction, Arithmetic expressions, Identifiers:	5	Chalk & Talk					
2.2	Assignment statements, Arrays, FOR statements, Block structure in ALGOL, The ALGOL grammar	5	Chalk & Talk					

2.3	Evaluatingarithmeticstatements,Compiling arithmetic expressions.	5	Chalk & Talk					
	UNIT – III							
3.1	Boolean Algebras - Introduction, Order, Boolean polynomials	5	Chalk & Talk					
3.2	Block diagrams forgetting networks,Connections with logic,Logicalcapabilities of ALGOL	5	E-Resources					
3.3	Boolean applications, Boolean sub algebras, Disjunctive normal form, direct products; morphism.	5	Chalk & Talk					
UNIT – IV								
4.1	Optimization and Computer Design - Introduction	3	Chalk & Talk					
4.2	Optimization,Computerizing Optimization, Logic design, NAND gates and NOR gates, the minimization problem,	7	E-Resources					
4.3	Procedure for deriving prime implicates, Consensus taking, Flip-flops, Sequential machine.	5	Discussion					
UNIT – V								
5.1	BinaryGroupCodesIntroduction,Encoding and decoding, Block codes.	7	E-Resources					
5.2	Matrix encoding techniques, Group codes, Decoding tables, Hamming codes.	8	Chalk & Talk					
	Total	75						

Course Designer Ms. A. Benazir Assistant Professor of Mathematics