HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Re-Accredited with A++ Grade by NAAC (3rd Cycle) Uthamapalayam - 625 533.

PG & RESEARCH DEPARTMENT OF

PHYSICS

PART IV - PHYSICS

SYLLABUS

Choice Based Credit System - CBCS

(As per TANSCHE)

With

Outcome Based Education (OBE)

(Academic Year 2023 - 2026)

Semester – I

Course Category	Course Code	Course Title	Hrs	CIAE	TEE	Max Marks	Credits
Part - IV	23UPHSE11	Physics for Everyday Life (NME)	2	25	75	100	2
	23UPHFN11	Introductory Physics	2	25	75	100	2

Semester – II

Course Category	Course Code	Course Title	Hrs	CIAE	TEE	Max Marks	Credits
Part - IV	23UPHSE21	Astrophysics (NME)	2	25	75	100	2
	23UPHSE22	Digital Photography	2	25	75	100	2

Semester – III

Course Category	Course Code	Course Title	Hrs	CIAE	TEE	Max Marks	Credits
	23UPHSE31	Communication Physics	1	25	75	100	1
Part - IV	23UPHSE32	Energy Physics	2	25	75	100	2
	23UGEVS41	Environmental Science	1	-	-	-	-

Semester – IV

Course Category	Course Code	Course Title	Hrs	CIAE	TEE	Max Marks	Credits
	23UPHSE41	Medical Instrumentation	2	25	75	100	2
Part - IV	23UPHSE42	Materials Science	2	25	75	100	2
	23UGEVS41	Environmental Science	1	25	75	100	2

Semester – V

Course Category	Course Code	Course Title	Hrs	CIAE	TEE	Max Marks	Credits
	23UGVED51	Value Education	2	25	75	100	2
Part - IV	23UPHIS51	Internship/Industrial Training	-	-	-	-	2

Semester – VI

Course Category	Course Code	Course Title	Hrs	CIAE	TEE	Max Marks	Credits
Part - IV	23UPHSE61	Problems in Physics	2	25	75	100	2

			S	s	Marks		
Course Code	Course Title	Category	Credit	Hour	CIAE	TEE	Total
23UPHSE11	PHYSICS FOR EVERYDAY LIFE (NME)	NME	2	2	25	75	100

	Learning Objectives						
L1	To know where all physics principles have been put to use in appreciate the concepts with a better understanding also to kno scientists who have made significant contributions to Physics	-					
UNIT	Contents		No. of Hours				
Ι	MECHANICAL OBJECTS: s pring scales – bouncing balls –roller coas bicycles –rockets and space travel.	ters –	6				
 OPTICAL INSTRUMENTS AND LASER: vision corrective lenses – polaroid glasses – UV protective glass – polaroid camera – color photography – holography and laser. 							
III	PHYSICS OF HOME APPLIANCES: bulb – fan – hair drier – television – air conditioners – microwave ovens – vacuum cleaners						
IV	SOLAR ENERGY: Solar constant – General applications of solar energy –						
VINDIAN PHYSICIST AND THEIR CONTRIBUTIONS: C.V. Raman, HomiJehangir Bhabha, Vikram Sarabhai, Subrahmanyan Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam and their contribution to science and technology.							
	Total		30				
	Course Outcomes		wledge evel				
CO	On completion of this course, students will						
1	Recognize and apply physics principles used in mechanical objects encountered daily.	K1,K2	2,K3,K4				
2	Explain the physics behind optical instruments and laser applications in everyday items.		2,K3,K4, 5,K6				
3	Understand the functioning and physical principles of household appliances.		2,K3,K4, 5,K6				
4	Describe the fundamentals and applications of solar energy.		2,K3,K4, 5,K6				
5	Appreciate the contributions of Indian physicists to the field of physics and technology.		2,K3,K4, K5				
	Textbooks						
1.	The Physics in our Daily Lives, Umme Ammara, Gugu cool Publishin 2019.	g, Hyde	rabad,				
2.	For the love of physics, Walter Lawin, Free Press, New York, 2011.						
	Reference Books						
1.	<i>Physics of Everyday Phenomena</i> by W. Thomas Griffith and Juliet Br Hill Education, 2014.	osing,	McGraw-				

2.	How Things Work: The Physics of Everyday Life by Louis A. Bloomfield, Wiley, 2021.							
3.	Everyday Physics: Modern Classical Physics Made Simple by Jo Hermans, Leiden							
э.	University Press, 2012.							
Web Resources								
1.	https://www.physicsclassroom.com/class/circles							
2.	https://www.optics4kids.org/							
3.	https://www.howstuffworks.com/							
4.	https://www.youtube.com/watch?v=zY7QKI1HjaY							

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P010
CO 1	3	2	2	1	3	2	2	3	2	1
CO 2	2	3	3	3	2	1	3	2	3	2
CO 3	3	2	2	1	3	2	3	3	3	1
CO 4	2	3	3	3	1	3	2	2	3	2
CO 5	3	2	1	3	3	3	2	3	3	1

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	2	3	2	1
CO2	1	3	2	3	2
CO3	2	3	3	3	1
CO4	3	2	2	3	2
C05	3	2	3	3	1

			Credits	S	Marks		
Course Code	Course Title	Category		Hours	CIAE	TEE	Total
23UPHFN11	INTRODUCTORY PHYSICS	Foundation Course	2	2	25	75	100

	Learning Objectives	
L1	To help students get an overview of Physics before learning their	core courses. To
LI	serve as a bridge between the school curriculum and the degree pro-	ogramme.
UNIT	Contents	No. of Hours
I	Vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and	6
	resultant of vectors – units and dimensions– standard physics constants	
II	Different types of forces –gravitational, electrostatic, magnetic, electromagnetic, nuclear –mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces	6
III	Different forms of energy – conservation laws of momentum, energy – types of collisions –angular momentum– alternate energy sources–real life examples	6
IV	Types of motion – linear, projectile, circular, angular, simple harmonic motions – satellite motion – banking of a curved roads – stream line and turbulent motions – wave motion – comparison of light and sound waves – free, forced, damped oscillations	6
v	Surface tension – shape of liquid drop – angle of contact – viscosity –lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use-conductors, insulators – thermal and electric	6
VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – webinars – industry inputs – social accountability – patriotism	
	Total	30
	Course Outcomes	Knowledge Level
CO	On completion of this course, students will	
1	Apply concept of vectors to understand concepts of Physics and solve problems.	K1,K2,K3,K4
2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.	K1,K2,K3,K4,K 5,K6
3	Quantify energy in different process and relate momentum, velocity and energy.	K1,K2,K3,K4,K 5,K6
4	Differentiate different types of motions they would encounter in various courses and understand their basis.	K1,K2,K3,K4,K 5,K6
5	Relate various properties of matter with their behavior and connect them with different physical parameters involved.	K1,K2,K3,K4,K 5
	Textbooks	
1.	D.S. Mathur, 2010, <i>Elements of Properties of Matter</i> , S.Chand and O.	Со
2.	Brijlal and N. Subrahmanyam, 2003, Properties of Matter, S.Chand	
	Reference Books	

1.	H.R. Gulati, 1977, <i>Fundamental of General Properties of Matter</i> , Fifth edition, S.Chand and Co.						
	Web Resources						
1	http://hyperphysics.phy-						
1.	astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/						
2.	https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/						

СО /РО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	3	3	2	3	2
CO 2	2	3	3	3	2	3	3	2	2	2
CO 3	3	3	3	2	3	3	3	2	3	2
CO 4	3	3	3	3	3	3	3	2	2	2
CO 5	3	2	3	3	3	3	3	2	2	3
Strong-3	Medi	um-2	L	ow-1						

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	3	2
CO2	3	3	2	2	2
CO3	3	3	2	3	2
CO4	3	3	2	2	2
CO5	3	3	2	2	3

Strong-3

Medium-2 Low-1

			s		Marks		
Course Code	Course Title	Category	Credit	Hours	CIAE	TEE	Total
23UPHSE21	ASTROPHYSICS (NME)	NME	2	2	25	75	100

	Learning Objectives				
L1	This course intends to introduce principles of astrophysics describin formation and evolution of stars and interpretation of various heave and provide an understanding of the physical nature of celestial bo the instrumentation and techniques used in astronomical research	enly phe	enomena		
UNIT	Contents		No. of Hours		
Ι	TELESCOPES: Optical telescopes – magnifying power, brightness, resolving power and f/a ratio – types of reflecting and refracting telescopes – detectors and image processing – radio telescopes – Hubble space telescope.				
II	SOLAR SYSTEM: Bode's law of planetary distances – meteors, meter comets, asteroids – Kuiper belt – Oort cloud – detection of gravita waves – recent advances in astrophysics.		6		
III	 ECLIPSES: types of eclipses – solar eclipse – total and partial solar eclipse – total and partial lunar eclipse – transits. THE SUN: physical and orbital data – solar atmosphere – photospl chromosphere – solar corona – prominences – sunspots – 11year cycle – solar flares. 	here –	6		
IV	 STELLAR EVOLUTION: H-R diagram – birth and death of low intermediate mass and massive stars – Chandrasekar limit – white d – neutron stars – pulsars – black holes – supernovae. GALAXIES: classification of galaxies – galaxy clusters –interaction galaxies, dark matter and super clusters – evolving universe. 	lwarfs	6		
V	ACTIVITIES IN ASTROPHYSICS:(i)Basic construction of telescope(ii)Develop models to demonstrate eclipses/planetary motion(iii)Night sky observation(iv)Conduct case study pertaining to any topic in this paper(v)Visit to any one of the National ObservatoriesAny three activities to be done compulsorily.		6		
	Total		30		
Course Outcomes L					
CO	On completion of this course, students will				
1	Identify and understand various types of telescopes and their functions.	K1,K2	2,K3,K4		
2	Describe the structure and components of the solar system and recent advances in detecting celestial phenomena.		2,K3,K4, 5,K6		
3	Explain eclipse phenomena and the physical features of the Sun.		2,K3,K4, 5,K6		
4	Analyze star evolution, galaxy types, and the concept of dark		, 2,K3,K4,		

	matter.	K5,K6						
5	Engage in practical activities related to astrophysical concepts.	K1,K2,K3,K4, K5						
Textbooks								
1.	Baidyanath Basu, (2001). <u>An introduction to Astrophysics</u> , S Prentice – Hall of India (P) Ltd, New Delhi	Second printing,						
2.	K.S. Krishnaswamy, (2002), <u>Astrophysics – a modern perspe</u> International (P) Ltd, New Delhi.	ective, New Age						
3.	Shylaja, B.S. and Madhusudan, H.R.,(1999) <u>, Eclipse: A Celestial Shae</u> BlackSwan,	<u>dow Play</u> , Orient						
	Reference Books							
1.	Dr.A.Mujiber Rahman,(2018) Introduction to Astrophyics, KAMS Publications,Theni							
2.	Carroll, B. W., & Ostlie, D. A. (2017). <i>Introduction to Modern Astro</i> Boston.	physics. Pearson,						
3.	Choudhuri, A. R. (2010). <i>Astrophysics for Physicists</i> . Cambridge U Cambridge.	University Press,						
	Web Resources							
1.	https://science.nasa.gov/astrophysics/technology/ground-based-	telescopes						
2.	https://www.nasa.gov/mission_pages/hubble/main/index.html							
3.	https://solarsystem.nasa.gov/							
4.	https://eclipse.gsfc.nasa.gov/							
5.	https://astro.unl.edu/naap/hr/animations/hr.html							
6.	https://www.esa.int/Science_Exploration/Space_Science/ Hubble_classifies_galaxies							
7.	https://www.skyandtelescope.com/astronomy-equipment/how-to own-telescope/	o-build-your-						

		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO 1		3	2	3	2	1	3	2	3
CO 2		2	3	3	3	2	1	3	2
CO 3		3	2	3	2	3	2	3	3
CO 4		2	3	3	2	1	3	2	3
CO 5		3	1	2	3	2	3	3	2
Charles and a D	M - J.		I 1						

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	2	3
CO2	1	3	2	3	2
CO3	2	3	3	2	3
CO4	3	2	3	3	2
CO5	3	3	2	3	1

			S			Mark	S
Course Code	Course Title	Category	Credit	Hours	CIAE	TEE	Total
23UPHSE22	DIGITAL PHOTOGRAPHY	SEC	2	2	25	75	100

	Learning Objectives					
L1 a	o understand the principles of photography and image formation nd arts behind it. To understand the essential components of co igital cameras and also the different image processing techniques.					
UNIT	Contents	No. of Hours				
I F I to	HOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE ORMATION: principle –chemical route and digital route –light, vavelengths, colors – shadows – light intensity and distance – naking light form images –pin-hole images – practical limitations o pin-hole images – lens instead of pin-hole – focal length and nage size – imaging of closer subjects.	6				
II aj fc	ENSES – CONTROLLING THE IMAGES: photographic lens – ocal length and angle of view (<i>problems</i>) – focusing movement – perture and f-numbers (<i>problems</i>) – depth of field– depth of ocus – image stabilization – lenses for digital cameras – lens and amera care.	6				
III co	AMERA USING FILMS AND ITS TYPES: camera and its essential omponents- shutter – aperture – light measurement – film ousing – camera types: view camera- view finder camera – eflex camera- single lens reflex (SLR) camera.	6				
ir ir IV au – au	DIGITAL CAMERAS PRINCIPLE AND TYPES: principle of digital mage capturing –comparison of digital and analog picture nformation – megapixel – grain, noise and pixel density – optical nd digital zooming – image stabilizer – bit depth – white balance color modes – file formats (TIFF, RAW and JPEG) – storage cards nd types – digital cameras: camera phones – compact camera – ybrid camera – digital SLR.	6				
V U U U U U U U U U U	THE DIGITAL IMAGE – POSTPRODUCTION: hardware: omputer and its peripherals – software: saving digital file – basic diting: navigating the image – undo/redo/history – crop – rotate brightness and contrast – color balance – hue/saturation – odge/burn – cloning and retouching – removing an element in n image – advanced editing: histogram/levels – curves – election tools: magic wand – printing digital images: inkjet rinter – laser printer – dye sub printer – lambda/light jet rinters.	6				
	Total	30				
	Textbooks					
	Iichel J. Langford, Anna Fox and Richard Sawdon Smith, <i>Basic ph</i> dn 2010-NL, Focal press, London.	otography, 9 th				
	Henry Carroll Read this if you want to take great photographs of people Laurence					
	Reference Books					

1	Mark Galer, <i>Digital Photography in Available Light essential s</i> press, London.	skills , 2006, Focal					
2	Paul Harcourt Davies, <i>The Photographer's practical handbook</i> ,	2005, UK PRESS.					
	Web Resources						
1	https://nptel.ac.in						
	Course Outcomes	Knowledge Level					
CO	On completion of this course, students will						
1	Learn in depth about types of lenses, their practical usages and other accessories used in photography	K1,K2,K3,K4					
2	Describe and predict how images are formed and magnified	K1,K2,K3,K4, K5,K6					
3	Appraise types of photographic components like shutter, aperture and its types.	K1,K2,K3,K4, K5,K6					
4	Learn in depth about types of picture quality and types of storage devices	K1,K2,K3,K4, K5,K6					
5	study the image enhancement techniques, image restoration procedures and the image compression procedures.	K1,K2,K3,K4, K5					

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	3	3	2	3	2
CO 2	2	3	3	3	2	3	3	2	2	2
CO 3	3	3	3	2	3	3	3	2	3	2
CO 4	3	3	3	3	3	3	3	2	2	2
CO 5	3	2	3	3	3	3	3	2	2	3
<u> </u>		N <i>4</i> 1'	0	T 4						

Strong-3

Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PSO		PSO1	PSO2	PSO3	PSO4	PSO5
C01		3	3	2	3	2
CO2		3	3	2	2	2
CO3		3	3	2	3	2
CO4		3	3	2	2	2
CO5		3	3	2	2	3
Strong-3	Medium-2	Lo	w-1			

			s			Mark	S
Course Code	Course Title	Category	Credits	Hours	CIAE	TEE	Total
23UPHSE31	COMMUNICATION PHYSICS	SEC	1	1	25	75	100

	Learning Objectives	
L1	To get a thorough knowledge on transmission and reception	of radio waves, the
LI	different types of communication like Fibre optic, radio, radar, sa	tellite, cellular
UNIT	Contents	No. of Hours
I	RADIO TRANSMISSION AND RECEPTION: Transmitter – modulation types of modulation – amplitude modulation – limitations of amplitude modulation – frequency modulation – comparison of FM and AM – demodulation- essentials in demodulation – receivers: AM radio receivers – types of AM radio receivers – stages of super heterodyne radio receiver, advantages – FM receiver – difference between FM and AM receivers.	3
II	FIBER OPTIC COMMUNICATION: Introduction – basic principle of fiber optics – advantages – construction of optical fiber – classification based on the refractive index profile – classification based on the number of modes of propagation – losses in optical fibers – attenuation–advantages of fiber optic communication.	3
III	RADAR COMMUNICATION: I ntroduction - basic radar system – radar range – antenna scanning –pulsed radar system – search radar –tracking radar – moving target indicator Doppler effect-MTI principle – CW Doppler radar.	3
IV	SATELLITE COMMUNICATION: Introduction history of satellites – satellite communication system – satellite orbits – basic components of satellite communication system – commonly used frequency in satellite – communication– multiple access communication–satellite communication in India.	3
v	MOBILE COMMUNICATION: Introduction – concept of cell – basic cellular mobile radio system – cell phone – facsimile – important features of fax machine – application of facsimile – VSAT (very small aperture terminals) modem IPTV (internet protocol television) -Wi-Fi-4G (basic ideas).	3
	Total	15
	Course Outcomes	Knowledge Level
CO	Outling basic knowledge of methods of identifying various radio	
1	Outline basic knowledge of methods of identifying various radio transmission methods.	K1,K2,K3,K4
2	Discuss the various methods of radio receivers, use these ideas to understand the use of radio propagation.	K1,K2,K3,K4,K5,K6
3	Extend the knowledge about the radar communication methods in our everyday life.	K1,K2,K3,K4,K5,K6
4	Interpret basic formulation of satellite technology using various	K1,K2,K3,K4,K5,K6

	methods and their uses.								
-	Relate the principles of various forms of mobile communication								
5	devices and their applications.	K1,K2,K3,K4,K5							
	Textbooks								
1.	V.K.Metha, <i>Principles of Electronics</i> , S. Chand and Co Ltd., 2013.								
2	2. Anokh Singh and Chopra A.K., <i>Principles of communication Engineering</i> , S.Chand								
Ζ.	^{2.} and Co, 2013.								
	Reference Books								
1.	J.S. Chitode, <i>Digital Communications</i> , 2020, Unicorn publications	5.							
2.	Senior John. M, Optical Fiber Communications: Principles a	and Practice, 2009,							
Ζ.	² . Pearson Education.								
	Web Resources								
1.	https://www.sciencedirect.com/topics/computer-science/								
1.	radio-transmission								
2	https://en.wikipedia.org/wiki/Radio#:~:text=The%20radio%20	waves%							
2.	20from%20 many,circuit%20and%20not%20passed%20on.								
3.	https://ieeexplore.ieee.org/document/7019537/								

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	3	2	2	2	3	3	2	2
CO 2	2	3	2	3	2	3	2	2	3	3
CO 3	3	2	3	3	3	2	3	3	2	2
CO 4	3	2	3	2	2	3	2	2	3	2
CO 5	3	2	3	2	3	3	2	3	3	3

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	3	3	2	2
CO2	3	2	2	3	3
CO3	2	3	3	2	2
C04	3	2	2	3	2
CO5	3	2	3	3	3

			ts	s		Mark	S
Course Code	Course Title	Category	Credit	Hours	CIAE	TEE	Total
23UPHSE32	ENERGY PHYSICS	SEC	2	2	25	75	100

	Learning Objectives	
L1	To get the understanding of the conventional and non-convention	onal energy sources,
LI	their conservation and storage systems.	
UNIT	Contents	No. of Hours
I	INTRODUCTION TO ENERGY SOURCES: Energy consumption as a measure of prosperity – world energy future – energy sources and their availability – conventional energy sources – non-conventional and renewable energy sources – comparison – merits and demerits.	6
II	SOLAR ENERGY: Solar energy Introduction – solar constant – solar radiation at the Earth's surface –Solar radiation measurements –solar energy storage and storage systems – solar pond – solar cooker – solar water heater – solar greenhouse – types of greenhouses – solar cells.	6
III	WIND ENERGY : Introduction –nature of the wind – basic principle of wind energy conversion – wind energy data and energy estimation – basic components of Wind Energy Conversion Systems (WECS) – advantages and disadvantages of WECS – applications – tidal energy.	6
IV	BIOMASS ENERGY: Introduction – classification – biomass conversion technologies –photosynthesis – fermentation – biogas generation –classification of biogas plants – anaerobic digestion for biogas – wood gasification – advantages and disadvantages.	6
V	ENERGY STORAGE: Importance of energy storage- batteries - lead acid battery -nickel-cadmium battery – fuel cells – types of fuel cells – advantages and disadvantages of fuel cells – applications of fuel cells - hydrogen storage.	6
	Total	30
	Course Outcomes	Knowledge Level
CO	On completion of this course, students will	
1	Outline basic knowledge of methods of identifying various energy resources.	K1,K2,K3,K4
2	Discuss the various methods of solar energy, use these ideas to understand the application of solar energy in everyday life.	K1,K2,K3,K4,K5,K6
3	Extend the knowledge about nature of wind energy production methods and utilization.	K1,K2,K3,K4,K5,K6
4	Interpret basic formulation of biomass energy using various methods and their uses.	K1,K2,K3,K4,K5,K6
5	Relate the principles of various forms of energy storage devices and their applications.	K1,K2,K3,K4,K5
	Textbooks	

2.	S P Sukhstme, J K Nayak, Solar Energy, Principles of Thermal Collection and Storage, McGraw Hill, 2008, 3 rd Edn.
3.	D P Kothari, K P Singal, Rakesh Rajan, PHI Learning Pvt Ltd, 2011, 2 nd Edn.
	Reference Books
1.	John Twidell and Tony Weir, Renewable Energy Resources, Taylor and Francis, 2005, 2 nd Edn.
2.	S.A.Abbasi and Nasema Abbasi, Renewable Energy sources and their environmental impact, PHI Learning Pvt. Ltd, 2008.
3.	M. P. Agarwal, Solar Energy, S. Chand and Co. Ltd., New Delhi,1982.
4.	H. C. Jain, Non-Conventional Sources of Energy, Sterling Publishers, 1986.
	Web Resources
1.	https://www.britannica.com/science/solar-energy#:~:text=Top% . 20Questions-,What%20is%20solar%20energy?, current%20and% 20anticipated%20energy%20requirements
2.	https://windexchange.energy.gov/what-is-wind
3.	https://www.eia.gov/energyexplained/biomass/#:~:text=Biomass% E2%80%94r enewable%20energy%20from%20plants, countries%20for%20cooking%20 and%20heating

CO 13232223322CO 2232323232233CO 3323332332233CO 432322322322	CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	PO 7	PO 8	PO 9	PO 10
CO 33233323322CO 432322322322	CO 1	3	2	3	2	2	2	3	3	2	2
CO 4 3 2 3 2 2 3 2 2 3 2	CO 2	2	3	2	3	2	3	2	2	3	3
	CO 3	3	2	3	3	3	2	3	3	2	2
	CO 4	3	2	3	2	2	3	2	2	3	2
CO 5 3 2 3 2 3 3 2 3 3 3	CO 5	3	2	3	2	3	3	2	3	3	3

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	3	3	2	2
CO2	3	2	2	3	3
CO3	2	3	3	2	2
CO4	3	2	2	3	2
CO5	3	2	3	3	3

			ts	S	Marks		
Course Code	Course Title	Category	Credit	Hours	CIAE	TEE	Total
23UPHSE41	MEDICAL INSTRUMENTATION	SEC	2	2	25	75	100

	Learning Objectives	
L1	This course aims to provide background of the Physics pr	-
	instrumentation technologies through theoretical and practical le	
UNIT	Contents	No. of Hours
Ι	BIOMETRICS: Introduction to man-instrument system and its components – problems encountered in measuring living systems – transducers– force, motion, pressure transducers. AUDIOMETRY: Mechanism of hearing – air and bone conduction – threshold of hearing – audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aids	6
II	 BIOELECTRIC POTENTIALS AND ELECTRODES: Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials –bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle – electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter. 	6
III	 DIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters – beam restrictor, grid – image quality. COMPUTED TOMOGRAPHY: Linear tomography – computed tomography – helical and multi slice – image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste. 	6
IV	 ULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging– Doppler ultrasound – ultrasound image quality and bio-effects. MAGNETIC RESONANCE IMAGING: Proton and external magnetic field – precession – radiofrequency and resonance – MRI signal – relaxation time – MRI instrumentation – imaging sequences – biosafety. 	6
v	PROJECT ASSIGNMENT: Clinical practice of <i>one</i> of the following: electro cardiogram, electro encephalogram, electro myogram, electro oculogram, computed tomography, positron emission tomography, ultrasound.	6
	Total	
	Course Outcomes	Knowledge Level

CO	On completion of this course, students will					
1	Outline basic knowledge of methods of biometric and audiometry to understand the basics physiology.	K1,K2,K3,K4				
2	Discuss the various methods of biomedical recorders, use these ideas to understand the use of biomedical instruments.	K1,K2,K3,K4,K5,K6				
3	Extend the knowledge about the CT scan and nuclear medicines in our everyday life.	K1,K2,K3,K4,K5,K6				
4	Interpret basic formulation of ultrasound and MRI scan using various methods and their uses.	K1,K2,K3,K4,K5,K6				
5	Relate the principles of various biomedical instrumentation by doing a project work.	K1,K2,K3,K4,K5				
	Textbooks					
1.	Leslie Cromwell, Fred Weibell, Erich Pfieffer (2002) <i>Biomedic</i> <i>and Measurements</i> Prentice Hall of India, New Delhi.	al Instrumentation				
2.	2. R. S. Khandpur (2003) <i>Handbook of Biomedical Instrumentation</i> 2 nd Edn. Tata McGraw Hill, New Delhi.					
3.	Kuppusamy Thayalan (2017), <i>Basic Radiological Physics</i> 2 nd E Medical Publishers (P) Ltd, New Delhi.	dn. Jaypee Brothers				
	Reference Books					
1.	John Webster (2004) <i>Bioinstrumentation</i> John Wiley and Sons, S	Singapore.				
2.	John Enderle, Susan Blanchard, Joseph Bronzino (2005) <i>Introdu Engineering</i> , 2 nd ed. Elsevier, San Deigo.	ction to Biomedical				
3.	William Hendee, Geoffrey Ibbott, Eric Hendee (2005) <i>Radiation</i> ed. Wiley-Liss, New Jersey.	<i>therapy</i> Physics 3 rd				
	Web Resources					
1.	https://en.wikipedia.org/wiki/Biometrics#:~:text= Biometrics% %20 measurements%20and%20calculations%20related, individ 20groups%20that%20are%20under%20surveillance	-				
2.	https://medlineplus.gov/ency/article/007451.htm#:~:text=Info Diag nostic%20radiology%20helps%20health%20care,colon%20 20or%20 heart%20disease					
3.	https://www.fda.gov/radiation-emitting-products/medical-imag imaging#:~:text=Ultrasound%20imaging%20(sonography)%20u asound%20(to%20visualize%20breast%20tissue)					

CO /PO		PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	PO 7	PO 8	PO 9	PO 10
CO 1		3	2	3	2	2	2	3	3	2	2
CO 2		2	3	2	3	2	3	2	2	3	3
CO 3		3	2	3	3	3	2	3	3	2	2
CO 4		3	2	3	2	2	3	2	2	3	2
CO 5		3	2	3	2	3	3	2	3	3	3
Strong-3	Me	dium-2		Low-1							

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	3	3	2	2
CO2	3	2	2	3	3
CO3	2	3	3	2	2
CO4	3	2	2	3	2
C05	3	2	3	3	3
Ctrong 2 Madium 2	I 1				

			S	S		Mark	S
Course Code	Course Title	Category	Credits	Hours	CIAE	TEE	Total
23UPHSE42	MATERIALS SCIENCE	SEC	2	2	25	75	100

	Learning Objectives	
L1	To learn imperfections in crystals, deformation of materials and t	esting of materials.
L2	To get knowledge on behaviour of a material, under the actio applications.	
L3	To know the applications of crystal defects.	
UNIT	Contents	No. of Hours
I	CRYSTAL IMPERFECTIONS: Introduction–point defects: vacancies (<i>problems</i>), interstitials, impurities, electronic defects–equilibrium concentration of point imperfections (<i>problems</i>)–application of point defects –line defects: edge dislocation (<i>problems</i>), screw dislocation – surface defects: extrinsic defects – intrinsic defects: grain boundaries, tilt and twist boundaries, twin boundaries, stacking faults – volume defects – effect of imperfections.	6
II	MATERIAL DEFORMATION: Introduction – elastic behavior of materials – atomic model of elastic behavior –modulus as a parameter in design – rubber like elasticity – inelastic behavior of materials – relaxation process – viscoelastic behavior of materials – spring-Dash pot models of viscoelastic behavior of materials.	6
III	PERMANENT DEFORMATION AND STRENGTHENING METHODS OF MATERIALS: Introduction –plastic deformation: tensile stress-strain curve – plastic deformation by slip – creep: mechanism of creep – creep resistant materials – strengthening methods: strain hardening, grain refinement – solid solution strengthening – precipitation strengthening.	6
IV	OPTICAL MATERIALS: Introduction – optical absorption in metals, semiconductors and insulators – NLO materials and their applications – display devices and display materials: fluorescence and phosphorescence – light emitting diodes – liquid crystal displays.	6
V	MECHANICAL TESTING: Destructive testing: tensile test, compression test, hardness test – non destructive testing (NDT): radiographic methods, ultrasonic methods – thermal methods of NDT: thermography – equipment used for NDT: metallurgical microscope.	6
	Total	30
	Course Outcomes	Knowledge Level
CO	On completion of this course, students will	
1	Outline basic knowledge of methods of crystal imperfection to study the crystal defects.	K1,K2,K3,K4

2	Discuss the various methods of behaviour of materials, use these ideas to understand the use of different types of metals.	K1,K2,K3,K4,K5,K6					
3	Extend the knowledge about deformation and strengthening of materials apply all these in our everyday life.	K1,K2,K3,K4,K5,K6					
4	Interpret basic formulation of Nonlinear optical devices and their uses.	K1,K2,K3,K4,K5,K6					
5	Relate the principles of various types of mechanical testing of materials.	K1,K2,K3,K4,K5					
	Textbooks						
1.	1. <i>Material science and Engineering</i> , Raghavan V, Prentice Hall of India, Sixt Edition, 2015.						
2.	<i>Materials science</i> , V. Rajendran, McGraw Hill publications 2011.						
	Reference Books						
1.	William D. Callister, Jr., Material Science and Engineering – A Edition, John Wiley and Sons, Inc., 2007.	An Introduction, 8 th					
2.	W. Bolton, <i>"Engineering materials technology"</i> , 3 rd Edition Heinemann, 2001.	n, Butterworth and					
3.	Donald R. Askeland, Pradeep P. Phule, <i>"The Science and Engine"</i> 5 th Edition, Thomson Learning, First Indian Reprint, 2007.	ering of Materials",					
4.	William F. Smith, <i>"Structure and Properties of Engineering A</i> Inc., U.S.A, 2 nd edition, 1993.	<i>lloys",</i> Mc-Graw-Hill					
	Web Resources						
1.	https://www.britannica.com/science/crystal-defect #:~: text = c defect%2C%20 imperfection%20in%20the,or%20neutrons)% 2 %20the%20solid	0					
2.	https://en.wikipedia.org/wiki/Deformation_(engineering)						
3.	https://en.wikipedia.org/wiki/Optical_Materials						

CO /PO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1		3	2	3	2	2	2	3	3	2	2
CO 2		2	3	2	3	2	3	2	2	3	3
CO 3		3	2	3	3	3	2	3	3	2	2
CO 4		3	2	3	2	2	3	2	2	3	2
CO 5		3	2	3	2	3	3	2	3	3	3
Strong_2	М	dium_2	•	Low-1							

Strong-3 Medium-2

Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PS01	PSO2	PSO3	PSO4	PSO5
C01	2	3	3	2	2
C02	3	2	2	3	3
C03	2	3	3	2	2
CO4	3	2	2	3	2
C05	3	2	3	3	3
Strong-3 Medium-2	Low-1				

			S	S	Marks		
Course Code	Course Title	Category	Credit	Hours	CIAE	TEE	Total
23UPHSE61	PROBLEMS IN PHYSICS	SEC	2	2	25	75	100

	Learning Objectives			
L1	The course aims to enhance students' problem-solving fundamental physics principles to a variety of competitive ex- reinforcing their understanding of key concepts in major to develop analytical thinking and effective problem-solving strateg	am prob opics in	lems while	
UNIT	Contents		No. of Hours	
I	CLASSICAL MECHANICS: Newton's Laws of Motion - First, Seco Third Laws: Concepts and Applications - Examples: Recoil of Rocket Propulsion - Work, Energy - Conservation of Er Momentum and Collisions - Conservation of Linear Momentum and Inelastic Collisions- Oscillations and Wave- Electromagnetic	a Gun, nergy - - Elastic	6	
II	ATOMIC AND NUCLEAR PHYSICS: Atomic Structure of atom - Bohr Model of the Hydrogen Atom - Energy Levels and Spectral analysis of Bohr, Sommerfeld and Vector atom model-Stern-Gerlach experiment - Nuclear Physics – Basic properties of the Nucleus—Nuclear energy and Nuclear forces- Liquid drop model-Binding Energy and Mass Defect - Nuclear Fission.			
III	 WAVE MECHANICS: Wave-Particle Duality – Planck's theory of Blackbody radiation -Photoelectric effect -Phenomenon of scattering- De Broglie Hypothesis - Matter Waves – Heisenberg Uncertainty principle-Introduction to Operator and Schrödinger Equation -Simple applications. 			
IV	SOLID STATE PHYSICS: Crystal Structure and Lattice Theory Cells, Crystal Lattices - Bravais Lattices and Miller Indices -Diffra waves and particles – Basic Electrical and Optical proper Materials - Conductors, Semiconductors, Insulators.	ction of	6	
V	 ELECTRONICS: Ohm's Law and Kirchhoff's Laws - Application to Simple Circuits - PN Junction Diode – Bridge Rectifier - Bipolar Junction Transistor (BJT) in CE Configuration- AND, OR and NOT gates (DTL) - Single Stage Amplifier - Hartley Oscillator - Operational Amplifiers (Op- Amps) - Adder, Subtractor, Differentiator and Integrator - Inverting and Non-Inverting Amplifiers -Logic gates -AND, OR, NOT- SR Flip-Flops. 			
	Total		30	
<u> </u>	Course Outcomes	Knowle	edge Level	
1	COOn completion of this course, students willUnderstand and apply the fundamental principles of ClassicalMechanics to solve real-world problems involving motion,forces, and energy.			
2	Comprehend the atomic and nuclear structure, types of radioactive decay, and nuclear reactions to solve problems in Modern Physics.	K1,K2,K	3,K4,K5,K6	
3	Apply the principles of Wave Mechanics to understand	K1.K2.K	3,K4,K5,K6	

	quantum phenomena and solve related problems using Schrödinger's equation.					
4	Analyze the fundamental concepts of Solid State Physics, including crystal structures and magnetic properties, and apply them to solve basic problems in material science.	K1,K2,K3,K4,K5,K6				
5	Develop foundational knowledge of analog and digital electronics, including circuit analysis and digital logic, to solve basic electronics problems.	K1,K2,K3,K4,K5				
	Textbooks					
1.	A to Z Physics for NEET ,Cengage Publishers,2021.					
2.	Sehgal, Chopra, Sehgal, Modern Physics, Sultan Chand & Sons, 2004					
3.	M.A. Wahab, Numerical Problems in Solid State Physics, Narosa publishing House Pvt. Ltd., 2011.					
4.	V.K. Metha, Principles of Electronics, S. Chand and Co. Ltd., 2					
	Reference Books					
1.	David Halliday, Robert Resnick, and Jearl Walker, Fundamental publishers, 2018.	s of Physics, Wiley				
2.	Jyotirmoy Guha, Quantum mechanics (Theory, Problems and Solutions), Books and Allied(P) LTD,2012.					
3.	Jyotirmoy Guha, Solid State Physics (Theory, Problems and Solutions), Books and Allied(P) LTD,2012.					
4.	I.E. Irodov, Problems in General Physics, CBS publishers Pvt. Ltd., 2019.					
5.	D.C. Tayal, University Physics, Himalaya Publishing House, 2012					
6.	A. P. Godse and U.A. Bakshi, Electron devices and publications,2003	circuits,Technical				
	Web Resources					
1.	https://archive.org/details/pinsky-problems-in-physics					
2.	https://phys.libretexts.org/Courses/University_of_California_ Davis/UCD%3A_Classical Mechanics/1%3A_Motion/Sample_Pro	blems				

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO 1	3	2	3	3	2	3	2	3
CO 2	3	2	3	3	3	3	3	2
CO 3	3	3	2	3	3	2	2	3
CO 4	2	3	3	2	3	3	3	2
CO 5	3	3	3	3	3	3	2	3

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PS01	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	3	2
CO2	3	2	3	2	3
CO3	2	3	2	3	2
CO4	3	2	3	2	3
CO5	3	3	3	3	3
Strong 2 Madium 2	Low 1				