# HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Re-Accredited with A++ Grade by NAAC (3<sup>rd</sup> Cycle) Uthamapalayam - 625 533.



# <u> PG & RESEARCH DEPARTMENT OF</u>

# **PHYSICS**

## **MASTER OF SCIENCE - PHYSICS**

## PART IV-SYLLABUS

# **Choice Based Credit System – CBCS**

## (As per TANSCHE)

With

## **Outcome Based Education (OBE)**

(Academic Year 2023 - 2025)

## Semester - II

| Course<br>Category | Course Code | Course Title    | Hrs | CIAE | TEE | Max<br>Marks | Credits |
|--------------------|-------------|-----------------|-----|------|-----|--------------|---------|
| Part – IV          | 23PPHSE21   | Medical Physics | 2   | 25   | 75  | 100          | 2       |

#### Semester - III

| Course<br>Category | Course Code | Course Title                        | Hrs | CIAE | TEE | Max<br>Marks | Credits |
|--------------------|-------------|-------------------------------------|-----|------|-----|--------------|---------|
|                    | 23PPHSE31   | Bio Physics                         | 4   | 25   | 75  | 100          | 2       |
| Part – IV          | 23PPHIS31   | Internship /<br>Industrial Activity | -   | -    | -   | -            | 2       |

#### Semester - IV

| Course<br>Category | Course Code | Course Title                     | Hrs | CIAE | TEE | Max<br>Marks | Credits |
|--------------------|-------------|----------------------------------|-----|------|-----|--------------|---------|
| Part – IV          | 23PPHSE41   | Characterization of<br>Materials | 4   | 25   | 75  | 100          | 2       |

|                  |                 |          | ts     | s    | Marks |     |       |
|------------------|-----------------|----------|--------|------|-------|-----|-------|
| Course<br>Code   | Course Title    | Category | Credit | Hour | CIAE  | TEE | Total |
| <b>23PPHSE21</b> | MEDICAL PHYSICS | SEC      | 2      | 2    | 25    | 75  | 100   |

| Pre-Requi | sites                                                                                  |                 |  |
|-----------|----------------------------------------------------------------------------------------|-----------------|--|
|           | tals of physiological concepts, Basics of instruments principle,                       |                 |  |
|           | Learning Objectives                                                                    |                 |  |
| L1        | To understand the major applications of Physics to Medicine                            |                 |  |
| L2        | To study the aid of different medical devices such as X-ray machines, gas              | mma             |  |
| LL        | camera, accelerator and nuclear magnetic resonance.                                    |                 |  |
|           | To outline the principles of Physics of different medical radiation device             | es and          |  |
| L3        | their modern advances, especially in medical radiation therapy and diffe               | erent           |  |
|           | applications in medical physics.                                                       |                 |  |
| L4        | To introduce the ideas of Radiography.                                                 |                 |  |
| L5        | To form a good base for further studies like research.                                 |                 |  |
| UNIT      | Contents                                                                               | No. of<br>Hours |  |
|           | X-RAYS AND TRANSDUCERS                                                                 |                 |  |
|           | Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum                       |                 |  |
| Ι         | -Bremsstrahlung - Characteristic X-Ray - X-Ray Tubes - Coolidge                        | 6               |  |
| L         | Tube – X-Ray Tube Design – Thermistors – photo electric transducers                    |                 |  |
|           | – Photo voltaic cells – photo emissive cells –Photoconductive cells–                   |                 |  |
|           | piezoelectric transducer                                                               |                 |  |
| II        | BLOOD PRESSURE MEASUREMENTS                                                            |                 |  |
|           | Introduction – Sphygmomanometer – Measurement of heart rate –                          |                 |  |
|           | basic principles of electrocardiogram (ECG) –Basic principles of                       | 6               |  |
|           | electro-neurography (ENG) – Basic principles of magnetic resonance                     |                 |  |
|           | imaging (MRI).                                                                         |                 |  |
|           | RADIATION PHYSICS                                                                      |                 |  |
|           | Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera                        |                 |  |
| III       | Relative Biological Effectiveness –Effective Dose – Sievert (Sv) –                     | 6               |  |
|           | Inverse Square Law – Interaction of radiation with Matter – Linear                     |                 |  |
|           | Attenuation Coefficient – Radiation Detectors – Thimble Chamber –                      |                 |  |
|           | Condenser Chambers – Geiger Counter – Scintillation Counter<br>MEDICAL IMAGING PHYSICS |                 |  |
|           | Radiological Imaging – Radiography – Filters – Grids – Cassette – X-                   |                 |  |
|           | Ray Film – Film processing – Fluoroscopy – Computed Tomography                         |                 |  |
| IV        | Scanner – Principal Function – Display – Mammography – Ultrasound                      | 6               |  |
|           | Imaging – Magnetic Resonance Imaging – Thyroid Uptake System –                         |                 |  |
|           | Gamma Camera (Only Principle, Function and display)                                    |                 |  |
|           | RADIATION PROTECTION                                                                   |                 |  |
|           | Principles of Radiation Protection – Protective Materials – Radiation                  | -               |  |
| V         | Effects – Somatic – Genetic Stochastic and Deterministic Effect –                      | 6               |  |
|           | Personal Monitoring Devices – TLD Film Badge – Pocket Dosimeter                        |                 |  |
|           | PROFESSIONAL COMPONENTS                                                                |                 |  |
| VI        | Expert Lectures, Online Seminars - Webinars on Industrial                              |                 |  |

|    | Interactions/Visits, Competitive Examinations, Employable a                                                   |                    |                |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------|--------------------|----------------|--|--|--|--|--|
|    | Communication Skill Enhancement, Social Accountability and                                                    | đ                  |                |  |  |  |  |  |
|    | Patriotism. Total                                                                                             |                    | 30             |  |  |  |  |  |
|    | Course Outcomes                                                                                               | Knowl              | edge Level     |  |  |  |  |  |
| CO | On completion of this course, students will                                                                   | KIIOWI             | euge Level     |  |  |  |  |  |
| LU | Learn the fundamentals, production and applications of X-                                                     |                    |                |  |  |  |  |  |
| 1  | rays.                                                                                                         | K1,K2              | K3,K4,K5,      |  |  |  |  |  |
|    | Understand the basics of blood pressure measurements.                                                         |                    |                |  |  |  |  |  |
| 2  | Learn about sphygmomanometer, EGC, ENG and basic                                                              | K1 K2              | K1,K2,K3,K4,K5 |  |  |  |  |  |
| -  | principles of MRI.                                                                                            |                    |                |  |  |  |  |  |
| 3  | Apply knowledge on Radiation Physics                                                                          | K1,K2,K            | 3,K4,K5,K6     |  |  |  |  |  |
| 4  | Analyze Radiological imaging and filters                                                                      |                    | 3,K4,K5,K6     |  |  |  |  |  |
| 5  | Assess the principles of radiation protection                                                                 |                    | 3,K4,K5,K6     |  |  |  |  |  |
| K  | 1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K                                                    | 5 – Evalu          | ate            |  |  |  |  |  |
|    | Textbooks                                                                                                     |                    |                |  |  |  |  |  |
| 1  | Dr.K.Thayalan <i>,Basic Radiological Physics</i> , Jayapee Brothers M<br>Ltd. New Delhi, 2003.                | edical Pub         | lishing Pvt.   |  |  |  |  |  |
| 2  | Curry, Dowdey and Murry, <i>Christensen's Physics of Dia</i><br><i>Lippincot</i> Williams and Wilkins, 1990.  | gnostic R          | adiology: ·    |  |  |  |  |  |
| 3  | FM Khan, Physics of Radiation Therapy, William and Wilkins, 3                                                 | rd ed, 200         | 3.             |  |  |  |  |  |
| 4  | D. J. Dewhurst, An Introduction to Biomedical Instrumental<br>Science, 2014.                                  |                    |                |  |  |  |  |  |
| 5  | R.S. Khandpur, <i>Hand Book of Biomedical Instrumentations</i> , 1st 2005.                                    | ed, TMG, I         | New Delhi,     |  |  |  |  |  |
|    | Reference Books                                                                                               |                    |                |  |  |  |  |  |
| 1. | Muhammad Maqbool, <i>An Introduction to Medical Physic</i><br>International Publishing, 2017.                 | cs, 1st ec         | l, Springe     |  |  |  |  |  |
| 2. | Daniel Jirák, FrantišekVítek, <i>Basics of Medical Physics</i> , 1st e<br>Karolinum Press, 2018               | d, Charles         | University     |  |  |  |  |  |
| 3. | Anders Brahme, <i>Comprehensive Biomedical Physics</i> , Volume Science, 2014.                                | e 1, 1st e         | ed, Elsevie    |  |  |  |  |  |
| 4. | K. Venkata Ram, <i>Bio-Medical Electronics and Instrumentat</i><br>Publications, New Delhi, 2001.             | <i>ion</i> , 1st e | d, Galgotia    |  |  |  |  |  |
| 5. | John R. Cameron and James G. Skofronick, 2009, Medical Phys<br>Interscience Publication, Canada, 2nd edition. | ics, John V        | Viley          |  |  |  |  |  |
|    | Web Resources                                                                                                 |                    |                |  |  |  |  |  |
| 1. | https:nptel.ac.in/courses/108/103/108103157/                                                                  |                    |                |  |  |  |  |  |
| 2. | https://www.studocu.com/en/course/university-of-technolo                                                      | gy-sydney          | /medical-      |  |  |  |  |  |
|    | devices-and-diagnostics/225692                                                                                |                    |                |  |  |  |  |  |
| 3. | https://www.technicalsymposium.com/alllecturenotes_biom                                                       |                    |                |  |  |  |  |  |
| 4. | https://lecturenotes.in/notes/17929-note-for-biomedical-ins<br>deepraj-adhikary/78                            | strumenta          | tion-bi-by-    |  |  |  |  |  |
| 5. | https://www.modulight.com/applications-medical/                                                               |                    |                |  |  |  |  |  |

## Mapping with Programme Outcomes:

| CO / PO | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| C01     | 3   | 3   | 3   | 1   | 1   | 2   | 3   | 3   | 1   | 3    |
| CO2     | 3   | 3   | 3   | 2   | 1   | 2   | 3   | 3   | 1   | 3    |
| CO3     | 3   | 3   | 3   | 2   | 1   | 2   | 3   | 3   | 1   | 3    |
| CO4     | 3   | 3   | 3   | 2   | 1   | 2   | 3   | 3   | 1   | 3    |
| CO5     | 3   | 3   | 3   | 1   | 1   | 2   | 3   | 3   | 1   | 3    |

Strong-3 Medium-2 Low-1

| <b>CO / PSO</b> | PSO1 | PSO2 | <b>PSO3</b> | <b>PSO4</b> | PSO5 | <b>PSO6</b> | <b>PSO7</b> | <b>PS08</b> | PSO9 | PS010 |
|-----------------|------|------|-------------|-------------|------|-------------|-------------|-------------|------|-------|
| CO1             | 3    | 3    | 3           | 1           | 1    | 2           | 3           | 3           | 1    | 3     |
| CO2             | 3    | 3    | 3           | 2           | 1    | 2           | 3           | 3           | 1    | 3     |
| CO3             | 3    | 3    | 3           | 2           | 1    | 2           | 3           | 3           | 1    | 3     |
| <b>CO4</b>      | 3    | 3    | 3           | 2           | 1    | 2           | 3           | 3           | 1    | 3     |
| CO5             | 3    | 3    | 3           | 1           | 1    | 2           | 3           | 3           | 1    | 3     |

Strong-3 Medium-2 Low-1

|                |              |          | S      | S    | Marks |     |       |
|----------------|--------------|----------|--------|------|-------|-----|-------|
| Course<br>Code | Course Title | Category | Credit | Hour | CIAE  | TEE | Total |
| 23PPHSE31      | BIOPHYSICS   | SEC      | 2      | 4    | 25    | 75  | 100   |

|      | Learning Objectives                                                                                                                                                                                                                                                                                                                                                                            |                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| L1   | To understand the physical principles involved in cell function                                                                                                                                                                                                                                                                                                                                | maintenance.                      |
| L2   | To understand the fundamentals of macromolecular strup propagation of life.                                                                                                                                                                                                                                                                                                                    |                                   |
| L3   | To understand the biophysical function of membrane and neu                                                                                                                                                                                                                                                                                                                                     | ron.                              |
| L4   | To understand various kinds of radiation and their effects on<br>know the hazards posed by such radiations and the required p                                                                                                                                                                                                                                                                  | living system and to precautions. |
| L5   | To understand the physical principles behind the various tech interrogating biological macromolecules.                                                                                                                                                                                                                                                                                         | •                                 |
| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                                                       | No. of Hours                      |
| I    | <b>CELLULAR BIOPHYSICS:</b> Architecture and Life Cycle of cells<br>– Organelles of Prokaryotic and Eukaryotic cell – Cell size<br>and shape – Fine structure of Prokaryotic and Eukaryotic<br>cell organization – Compartment & assemblies membrane<br>system – Extracellular matrix - Molecular mechanisms of<br>Vesicular traffic – Electrical activities of cardiac and<br>neuronal cells. | 12                                |
| II   | MOLECULAR BIOPHYSICS: Macromolecular structure:<br>Protein structure– amino acids, peptide bonds, primary,<br>secondary, tertiary and quaternary structures of proteins<br>Nucleic acid structure: nucleosides and nucleotides, RNA<br>structure, DNA structure and conformation. Special Bio-<br>macromolecules: Metalloproteins, nucleoproteins,<br>ribozymes, chaperons and prions.         | 12                                |
| III  | MEMBRANEANDNEUROBIOPHYISCS:Modelsmembranes-Biologicalmembranes anddynamics-MembraneCapacitors-Transport across cell and organellemembranes-Ion channels.Nervous system:Organization of the nervous system-Membrane potential-Origins of membrane potentialElectrochemical potentials-Nernst equationequation                                                                                   | 12                                |
| IV   | RADIATION BIO PHYSICS:X-Ray:Effectsonbio-macromolecules – Gamma Radiation:Molecular effectsofgamma radiation,Radiation effectsonnucleicacidsandmembranes,Effectsoncellandorganelles–UVradiation:Effectsonbio-macromoleculesandproteins–Radiationhazardsandprotection–use of radiations in cancer.                                                                                              | 12                                |
| V    | PHYSICAL METHODS IN BIOLOGY:Spectroscopy:UV-Visible absorption spectrophotometry – Optical RotatoryDispersion (ORD) – Structure Determination:X-rayCrystallography,Electron spin resonance (ESR) andbiological applications.Chromatography:                                                                                                                                                    | 10                                |

|             | chromatography (TLC), Gas liquid chromatography (GLC) –         |                       |
|-------------|-----------------------------------------------------------------|-----------------------|
|             | Centrifugation: Differential centrifugation, density gradient   |                       |
|             | centrifugation. Electrophoresis: Gel electrophoresis,           |                       |
|             | polyacrylamide gel electrophoresis.                             |                       |
|             | <b>PROFESSIONAL COMPONENTS:</b> Expert Lectures, Online         |                       |
| <b>1</b> 71 | Seminars - Webinars on Industrial Interactions/Visits,          | 2                     |
| VI          | Competitive Examinations, Employable and Communication          | 2                     |
|             | Skill Enhancement, Social Accountability and Patriotism.        |                       |
|             | Total                                                           | 60                    |
|             | Course Outcomes                                                 | Knowledge Level       |
| СО          | On completion of this course, students will                     |                       |
|             | Understand the structural organization and function of          |                       |
| 1           | living cells and should able to apply the cell signaling        | K1,K2,K3,K4,K5        |
|             | mechanism and its electrical activities.                        |                       |
| 2           | Comprehension of the role of biomolecular conformation to       | K1,K2,K3,K4,K5        |
| 2           | function.                                                       | <b>N1,N2,N3,N4,N3</b> |
|             | Conceptual understanding of the function of biological          |                       |
| 3           | membranes and also to understand the functioning of             | K1,K2,K3,K4,K5,K6     |
|             | nervous system.                                                 |                       |
| 4           | To know the effects of various radiations on living systems     | K1,K2,K3,K4,K5,K6     |
|             | and how to prevent ill effects of radiations.                   | K1,K2,K3,K4,K3,K0     |
| 5           | Analyze and interpret data from various techniques viz.,        | K1,K2,K3,K4,K5,K6     |
| 5           | spectroscopy, crystallography, chromatography etc.,             | K1,K2,K3,K1,K3,K0     |
|             | Textbooks                                                       |                       |
| 1.          | The cell: A molecular approach, Geoffrey M. Cooper, ASM Pres    |                       |
| 2.          | Biophysics, Vasantha Pattabhi, N. Gautham, Narosa Publishing    | <u>,</u> 2009.        |
| 3.          | Biophysics, P. S. Mishra VK Enterprises, 2010.                  |                       |
| 4.          | Biophysics, M. A Subramanian, MJP Publishers, 2005.             |                       |
| 5.          | Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.       |                       |
|             | Reference Books                                                 |                       |
| 1.          | Chemical Biophysics by Daniel A Beard (Cambridge University     | 7 Press, 2008).       |
| 2.          | Essential cell biology by Bruce Albert et al (Garland Science). |                       |
| 3.          | Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegl         | er. Springer Verlag,  |
|             | Berlin (1983).                                                  |                       |
| 4.          | Membrane Biophysics by Mohammad Ashrafuzzaman,                  | Jack A. Tuszynski,    |
|             | (Springer science & business media).                            | -                     |
| 5.          | Biological spectroscopy by Iain D. Campbell, Raymond A. Dwe     | k                     |
|             | Web Resources                                                   |                       |
| 1.          | General Bio: http://www.biology.arizona.edu/DEFAULT.html        |                       |
| 2.          | Spectroscopy: http://www.cis.rit.edu/htbooks/nmr/inside.ht      |                       |
| 3.          | Electrophoresis: http://learn.genetics.utah.edu/content/labs/   | • /                   |
| 4.          | Online biophysics programs: http://mw.concord.org/modeler       | /                     |
| 5.          | https://blanco.biomol.uci.edu/WWWResources.html                 |                       |

#### Mapping with Programme Outcomes:

| CO /PO      | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 |
|-------------|------|------|------|------|------|------|------|------|------|-------|
| CO 1        | 3    | 3    | 3    | 2    | 1    | 2    | 1    | 3    | 3    | 2     |
| CO 2        | 3    | 3    | 3    | 2    | 1    | 2    | 1    | 3    | 3    | 2     |
| CO 3        | 3    | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 3    | 2     |
| <b>CO 4</b> | 3    | 3    | 3    | 2    | 1    | 1    | 2    | 3    | 3    | 3     |
| CO 5        | 3    | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 3    | 3     |

Strong-3 Medium-2 Low-1

#### Level of Correlation between PSO's and CO's

| CO /PSO             | <b>PSO1</b> | PSO2 | PSO3 | <b>PSO4</b> | PSO5 | <b>PSO6</b> | <b>PSO7</b> | <b>PS08</b> | PSO9 | PS010 |
|---------------------|-------------|------|------|-------------|------|-------------|-------------|-------------|------|-------|
| CO 1                | 3           | 3    | 3    | 2           | 1    | 2           | 1           | 3           | 3    | 2     |
| CO 2                | 3           | 3    | 3    | 2           | 1    | 2           | 1           | 3           | 3    | 2     |
| CO 3                | 3           | 3    | 3    | 3           | 1    | 1           | 2           | 3           | 3    | 2     |
| <b>CO 4</b>         | 3           | 3    | 3    | 2           | 1    | 1           | 2           | 3           | 3    | 3     |
| CO 5                | 3           | 3    | 3    | 3           | 1    | 1           | 2           | 3           | 3    | 3     |
| <b>A</b> . <b>A</b> | 37 11       | 0    | -    | 4           |      |             |             |             |      |       |

Strong-3 Medium-2 Low-1

|                |                                  |          | ts     | S    | Marks |     |       |
|----------------|----------------------------------|----------|--------|------|-------|-----|-------|
| Course<br>Code | Course Title                     | Category | Credit | Hour | CIAE  | TEE | Total |
| 23PPHSE41      | CHARACTERIZATION OF<br>MATERIALS | SEC      | 2      | 4    | 25    | 75  | 100   |

|      | Learning Objectives                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |  |  |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| L1   | To make the students learn some important thermal analysis to<br>TGA, DTA, DSC and TMA.                                                                                                                                                                                                                                                                                                                                              | cechniques namely  |  |  |  |  |  |  |  |
| L2   | To make the students understand the theory of image form microscope and to introduce other specialized microscopic tee                                                                                                                                                                                                                                                                                                               | -                  |  |  |  |  |  |  |  |
| L3   | To make the students learn and understand the principle of we microscopes and scanning probe microscopes.                                                                                                                                                                                                                                                                                                                            | orking of electron |  |  |  |  |  |  |  |
| L4   | To make the students understand some important electrical and characterization techniques for semiconducting materials.                                                                                                                                                                                                                                                                                                              | nd optical         |  |  |  |  |  |  |  |
| L5   | To introduce the students, the basics of x-ray diffraction techniques and some important spectroscopic techniques.                                                                                                                                                                                                                                                                                                                   |                    |  |  |  |  |  |  |  |
| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                                                                                             | No. of Hours       |  |  |  |  |  |  |  |
| I    | <b>THERMAL ANALYSIS:</b> Introduction – thermogravimetric<br>analysis (TGA) – instrumentation – determination of weight<br>loss and decomposition products – differential thermal<br>analysis (DTA)- cooling curves – differential scanning<br>calorimetry (DSC) – instrumentation – specific heat capacity<br>measurements – determination of thermo mechanical<br>parameters.                                                      | 12                 |  |  |  |  |  |  |  |
| II   | MICROSCOPIC METHODS: Optical Microscopy: optical<br>microscopy techniques – Bright field optical microscopy –<br>Dark field optical microscopy – Dispersion staining<br>microscopy - phase contrast microscopy –differential<br>interference contrast microscopy - fluorescence microscopy<br>- confocal microscopy - digital holographic microscopy - oil<br>immersion objectives - quantitative metallography - image<br>analyzer. | 12                 |  |  |  |  |  |  |  |
| III  | <b>ELECTRON MICROSCOPY AND SCANNING PROBE</b><br><b>MICROSCOPY:</b> SEM, EDAX, EPMA, TEM: working principle<br>and Instrumentation – sample preparation –Data collection,<br>processing and analysis- Scanning tunnelling microscopy<br>(STEM) - Atomic force microscopy (AFM) - Scanning new<br>field optical microscopy.                                                                                                           | 12                 |  |  |  |  |  |  |  |
| IV   | ELECTRICALMETHODSANDOPTICALCHARACTERISATION:Two probe and four probe methods-<br>van der Pauw method – Hall probe and measurement –<br>scattering mechanism – C-V characteristics – Schottky<br>barrier capacitance – impurity concentration –<br>electrochemical C-V profiling – limitations.<br>Photoluminescence – light – matter interaction –<br>instrumentation – electroluminescence – instrumentation –<br>Applications.     | 12                 |  |  |  |  |  |  |  |

| v  | X-RAY AND SPECTROSCOPIC METHODS: Principles and<br>instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman<br>spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS-proton<br>induced X-ray Emission spectroscopy (PIXE) –Rutherford<br>Back Scattering (RBS) analysis-application - Powder<br>diffraction – Powder diffractometer -interpretation of<br>diffraction patterns - indexing - phase identification -<br>residual stress analysis - Particle size, texture studies - X-ray<br>fluorescence spectroscopy - uses. | . 10                         |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| VI | <b>PROFESSIONAL COMPONENTS:</b> Expert Lectures, OnlineSeminars - Webinars on Industrial Interactions/Visits,Competitive Examinations, Employable and CommunicationSkill Enhancement, Social Accountability and Patriotism.                                                                                                                                                                                                                                                                                          | 2                            |  |
|    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                           |  |
|    | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Knowledge Level              |  |
| CO | On completion of this course, students will                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |  |
| 1  | Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make interpretation of the results.                                                                                                                                                                                                                                                                                                                                                                                                               | K1,K2,K3,K4,K5               |  |
| 2  | The concept of image formation in Optical microscope, developments in other specialized microscopes and their applications.                                                                                                                                                                                                                                                                                                                                                                                          | K1,K2,K3,K4,K5               |  |
| 3  | The working principle and operation of SEM, TEM, STM and AFM.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K1,K2,K3,K4,K5,K6            |  |
| 4  | Understood Hall measurement, four –probe resistivity<br>measurement, C-V, I-V, Electrochemical, Photoluminescence<br>and electroluminescence experimental techniques with<br>necessary theory.                                                                                                                                                                                                                                                                                                                       | K1 K2 K3 K4 K5 K6            |  |
| 5  | The theory and experimental procedure for x- ray diffraction and some important spectroscopic techniques and their applications.                                                                                                                                                                                                                                                                                                                                                                                     | K1,K2,K3,K4,K5,K6            |  |
|    | Textbooks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |  |
| 1. | R. A. Stradling and P. C. Klipstain. <i>Growth and Characterizati semiconductors.</i> Adam Hilger, Bristol, 1990.                                                                                                                                                                                                                                                                                                                                                                                                    | ion of                       |  |
| 2. | J. A. Belk. <i>Electron microscopy and microanalysis of crystal</i><br>Applied Science Publishers, London, 1979.                                                                                                                                                                                                                                                                                                                                                                                                     | line materials.              |  |
| 3. | Lawrence E. Murr. <i>Electron and Ion microscopy and Microa</i><br><i>and Applications</i> . Marcel Dekker Inc., New York, 1991                                                                                                                                                                                                                                                                                                                                                                                      | nalysis principles           |  |
| 4. | D. Kealey and P. J. Haines. <i>Analytical Chemistry</i> . Viva Books P<br>Delhi, 2002.                                                                                                                                                                                                                                                                                                                                                                                                                               | Private Limited, New         |  |
| 5. | Li, Lin, Ashok Kumar <i>Materials Characterization Technique</i><br>Press,(2008).                                                                                                                                                                                                                                                                                                                                                                                                                                    | s Sam Zhang; CRC             |  |
|    | Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |  |
| 1. | Cullity, B.D., and Stock, R.S., <i>"Elements of X-Ray Diffrac</i> (2001).                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>tion",</i> Prentice-Hall, |  |
| 2. | Murphy, Douglas B, <i>Fundamentals of Light Microscopy and</i> Wiley-Liss, Inc. USA, (2001).                                                                                                                                                                                                                                                                                                                                                                                                                         | Electronic Imaging,          |  |
| 3. | Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Bane<br><i>Techniques for Materials Characterization, Materials So</i><br><i>(monograph series),</i> Volumes 49 – 51, (2009).Volumes 49 – 51                                                                                                                                                                                                                                                                                                                       | cience Foundations           |  |
| 4. | Wendlandt, W.W., <i>Thermal Analysis</i> , John Wiley & Sons, (198                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · - )·                       |  |

| 5.            | Wachtman, J.B., Kalman, Z                                            | H., <b>Characterization</b>           | of Materials, |  |  |  |  |  |  |  |  |
|---------------|----------------------------------------------------------------------|---------------------------------------|---------------|--|--|--|--|--|--|--|--|
| 5.            | ButterworthHeinemann, (1993).                                        |                                       |               |  |  |  |  |  |  |  |  |
| Web Resources |                                                                      |                                       |               |  |  |  |  |  |  |  |  |
| 1.            | https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf |                                       |               |  |  |  |  |  |  |  |  |
| 2.            | http://www.digimat.in/nptel/courses/video/113106034/L11.html         |                                       |               |  |  |  |  |  |  |  |  |
| 3.            | https://nptel.ac.in/courses/104106122                                |                                       |               |  |  |  |  |  |  |  |  |
| 4.            | https://nptel.ac.in/courses/118104                                   | https://nptel.ac.in/courses/118104008 |               |  |  |  |  |  |  |  |  |
| 5.            | https://www.sciencedirect.com/jou                                    | nal/materials-characteri              | zation        |  |  |  |  |  |  |  |  |

## Mapping with Programme Outcomes:

| CO /PO        |     | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 |
|---------------|-----|------|------|------|------|------|------|------|------|------|-------|
| CO 1          |     | 3    | 3    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 3     |
| CO 2          |     | 3    | 3    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO 3          |     | 3    | 3    | 2    | 2    | 2    | 3    | 2    | 2    | 2    | 2     |
| <b>CO 4</b>   |     | 2    | 2    | 2    | 3    | 2    | 3    | 2    | 2    | 2    | 2     |
| CO 5          |     | 2    | 2    | 2    | 2    | 2    | 2    | 3    | 2    | 2    | 2     |
| Charles and D | N/L |      |      | I 1  |      |      |      |      |      |      |       |

Strong-3 Medium-2 Low-1

#### Level of Correlation between PSO's and CO's

| CO /PSO     | <b>PS01</b> | PSO2 | PSO3 | <b>PSO4</b> | PSO5 | <b>PSO6</b> | <b>PS07</b> | <b>PS08</b> | PSO9 | <b>PSO10</b> |
|-------------|-------------|------|------|-------------|------|-------------|-------------|-------------|------|--------------|
| CO 1        | 3           | 3    | 3    | 2           | 2    | 2           | 2           | 2           | 2    | 3            |
| CO 2        | 3           | 3    | 3    | 2           | 2    | 2           | 2           | 2           | 2    | 2            |
| CO 3        | 3           | 3    | 2    | 2           | 2    | 3           | 2           | 2           | 2    | 2            |
| <b>CO 4</b> | 2           | 2    | 2    | 3           | 2    | 3           | 2           | 2           | 2    | 2            |
| CO 5        | 2           | 2    | 2    | 2           | 2    | 2           | 3           | 2           | 2    | 2            |
| Strong-3    | Medium-2    |      | Low  | <i>r</i> -1 |      |             |             |             |      |              |